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Abstract We present a remote optical tone delivery and simplified DSP algorithms for low-cost 

implementations of 100G TFDM coherent PON. A 50 km upstream burst transmission with 32 split 

experimental demonstration has been successfully achieved with similar performance compared to a 

regular ECL-based system. ©2023 The Author(s) 

Introduction 

Optical access networks are progressing towards 

improved capabilities to handle heavy data 

stream with greater reach and penetration [1, 2]. 

Passive optical network (PON) dominates the 

short-reach access market due to its efficient 

resource sharing, but future 100G and higher 

capacity PON faces challenges with current 

intensity-modulation direct-detection (IM-DD) 

technology [1-3]. Coherent technology is a future-

proof solution with high capacity and improved 

receiver sensitivity. Time and frequency division 

multiplexing (TFDM) coherent PON is a 

promising contender for next-gen access 

networks, offering great flexibility leveraging time 

and frequency domain bandwidth sharing [4-10]. 

TFDM offers advantages in terms of flexibility and 

simplicity over traditional PON technologies (i.e., 

time division multiplexing (TDM) and wavelength 

division multiplexing (WDM)), without requiring 

multiple wavelengths and colored optics.  

High component costs associated with 

existing coherent optics mainly come from high-

quality optical sources like external cavity lasers 

(ECLs) [11]. For access applications, optical 

injection locking (OIL) using Fabry-Perot laser 

diodes (FP-LDs) presents a feasible solution to 

enable introduction of cost-effective coherent 

optics into PON [12-14]. In a conventional 

coherent PON, an optical master tone for OIL 

overlaps with downstream coherent signals, 

resulting in signal transmission errors. TFDM 

technology allows an optical master tone to be 

coupled between two adjacent subcarriers, 

enabling low-cost optical network unit (ONU) 

devices through OIL in a single fibre 

configuration. 

In this work, we propose a novel architecture 

for TFDM coherent PON, replacing expensive 

ECLs with more affordable FP-LDs through OIL. 

Experimental demonstrations show no significant 

degradation in performance compared to a 

regular ECL-based system. Frequency locking 

between ONU and optical line terminal (OLT) 

light sources benefits the proposed architecture 

by mitigating random frequency drifts and 

simplifying receiver digital signal processing 

(DSP) through removing of carrier frequency 

offset (CFO) compensation processes. This work 

extends our recent publication [9], achieving 

successful demonstration of upstream 

transmission in burst TFDM signals and further 

simplifying receiver DSP. 

Operational Principles 

Fig. 1(a) shows the proposed TFDM PON 

structure with high flexibility for bandwidth 

allocation. In the downstream (DS) direction, two 

TFDM subcarriers each running at 50 Gb/s (12.5 

GBd dual polarization (DP)-quadrature phase 

shift keying (QPSK) signal) are generated over 

frequency f1 at the OLT, coupled with two optical 

tones at f1 and f2. The DS TFDM signals are 

broadcasted in continuous mode. At the ONU, 
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Fig. 1: (a) Coherent TFDM PON architecture featuring remote optical tone delivery and upstream burst; (b) TFDM upstream 

burst distribution in subcarriers. 
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the f1 optical tone is used as master light source 

for OIL to generate local oscillator (LO) and 

detect DS signals. Where the f2 optical tone 

serves as the master light source for OIL to 

generate an optical carrier for upstream (US) 

signal transmission. The f1 and f2 are spaced 100 

GHz apart to align with the ITU DWDM frequency 

grid. In the US direction, four TFDM subcarriers 

each at 25 Gb/s (6.25 GBd DP-QPSK signal) are 

transmitted in TDM burst mode. OIL process 

amplifies both tones, removing the need for extra 

optical amplifiers. Fig. 1(b) illustrates TFDM 

operation with burst transmission, allowing for 

two-dimensional bandwidth resource allocation 

and dynamic configuration of consecutive bursts 

in one of the TFDM subcarriers for minimal 

latency. 

Fig. 2 illustrates the DSP procedures for the 

proposed coherent TFDM transmitter, receiver, 

and burst preamble design. The transmitter DSP 

as shown in Fig. 2(a) involves burst frame 

generation which required only for US burst 

transmission and not included in DS 

broadcasting, and subcarrier processing, with the 

burst frames or data frames assigned to each 

subcarrier after Nyquist pulse shaping and digital 

up-conversion. The receiver DSP as shown in 

Fig. 2(b) includes down-conversion, fast Fourier 

transform (FFT), filtering, and inverse fast Fourier 

transform (IFFT), followed by burst signal 

detection, chromatic dispersion (CD) 

compensation, and clock recovery. A double-

correlation based burst frame synchronization 

algorithm is adopted, provides a reliable and 

robust burst detection [15, 16]. The TFDM burst 

frame for US transmission, as shown in Fig. 2(c) 

includes a guard band, Rx settling, and 

synchronization, with the guard band used for 

separating adjacent burst frames and allowing for 

transmitter (Tx) turn on/off. 

Experimental Setup 

The experimental setup for the proposed TFDM 

coherent PON is shown in Figure 3. Two ECLs 

are used as light sources at the OLT side - one 

generates DS TFDM signals through a coherent 

driver modulator (CDM), while the other provides 

the OLT receiver's LO for US signal detection. 

The output of the ECLs is also used to provide 

optical master tones for injection locking at the 

ONUs. The experiment uses a 50 km fibre link 

and a 1x32 passive optical splitter for the optical 

distribution network (ODN). At the ONU end, a 

multiport tunable optical filter (TOF) separates 

the DS TFDM signals and the two optical tones. 

The DS TFDM signals are detected by a coherent 

homodyne receiver using OIL LO, and the US 

TFDM signals are transmitted through another 

OIL setup coupled to a CDM. Both DS and US 

signals are processed through offline DSP codes. 

The optical spectrums of the DS (broadcast) and 

US (burst) TFDM signals are shown in the insets 

of Figure 3. Off-the-shelf discrete components 

are used in the experiment for demonstration, but 

advanced photonic integration platforms can 

combine these components to achieve low-cost 

commercial products.  

Results and Discussions 

To demonstrate system functionality and 

performance of the proposed TFDM coherent 

PON architecture with remote optical carrier 

delivery, bi-directional transmission tests has 

been performed through the 50 km/32 split ODN. 

System performance for DS transmission in 
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Fig. 2: (a) TFDM Tx DSP procedures; (b) TFDM Rx DSP 

procedures; (c) Preamble design in TFDM burst frame. 
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Fig. 3: TFDM coherent PON experimental setup. 



  

continuous mode, with injection locked FP-LD 

used as LO for ONU receiver has been previously 

reported [9] with minimal performance 

degradation compared with an ECL based 

system and will not be repeated here. This work 

will focus on US burst transmission. 

Different symbol lengths are tested for burst 

synchronization in US transmission using TFDM 

burst signals. Double-correlation patterns are 

selected with symbol lengths of 256, 128, 64, 32, 

and 16, corresponding to time periods of 40.96 

ns, 20.48 ns, 10.24 ns, 5.12 ns, and 2.56 ns 

respectively. Experiments show that a symbol 

length larger than 32 (5.12 ns) is needed for 

reliable burst detection. Following experiment 

use a synchronization pattern of 256 symbols 

(40.96 ns) and an Rx setting pattern of 512 

symbols (81.92 ns) in the TFDM burst signals. 

Using an OIL-based ONU Tx laser enabled by 

the remotely delivered optical tone, bit-error-rate 

(BER) versus received optical power (ROP) per 

channel results for US burst TFDM signals are 

shown in Fig. 4(a)-(d). The results include both 

fibre transmission (50 km/32 split) and back-to-

back (B2B) cases, as well as the BER 

performance of the four subcarriers using regular 

ECL as Tx laser in comparison. Similar to the DS 

broadcasting results, the US burst transmission 

using the proposed OIL-based transmitter 

exhibits negligible performance degradation at 

both the staircase hard-decision (HD) forward 

error correction (FEC) threshold (BER=4.5E-3) 

[17] and concatenated soft decision (SD) FEC 

threshold (BER=1.2E-2) [18], compared with the 

traditional ECL-based transmitter. 

The proposed OIL-based system has an 

additional benefit of frequency locking the ONU 

Tx and Rx LO to the OLT light sources, resulting 

in minimal optical frequency offset between them. 

In comparison, a regular ECL-based system has 

a much larger CFO of around 0.34 GHz as shown 

in Fig. 5(a), making signal recovery impossible 

without CFO compensation. Where the proposed 

OIL-based system has a residual CFO of only 

0.12 MHz, which enables simplification of the Rx 

coherent DSP by removing the CFO 

compensation process without significant 

performance degradation. Fig. 5(b) shows BER 

performance of the OIL-based system without 

CFO compensation in both DS and US burst 

transmissions.  Compared to the ECL-based 

system with CFO compensation, the OIL-based 

system offers similar performance, but with 

significant Rx DSP complexity simplification and 

ONU hardware cost savings. 

Conclusions 

In this study we introduce a novel TFDM coherent 

PON architecture that features innovations in 

both hardware and DSP simplification, to enable 

cost-effective implementations through remote 

master tone delivery and OIL. System 

functionality was evaluated through upstream 

burst transmission, which showed nearly 

identical performance compared to a traditional 

ECL-based system. Furthermore, the system 

CFO was minimized by utilizing frequency 

locking, enabling the removal of the CFO 

compensation process from the Rx coherent DSP 

without compromising system performance.  

Fig. 4: US TFDM burst transmission BER versus ROP per channel results: (a) CH1; (b) CH2; (c) CH3; (d) CH4. 
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Fig. 5: (a) Residual CFO for proposed OIL scheme vs. 

regular ECL-based system; (b) BER vs. ROP per channel for 

proposed OIL scheme without CFO correction compared 

with regular ECL-based system with CFO correction. 
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