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Abstract Entanglement-based quantum networks rely upon the characterisation of shared quantum
resources between optical links that can scramble entanglement. Here we overcome the significant
limitations of tomographing large, unstructured quantum systems to experimentally reconstruct high-
dimensional states and certify record entanglement dimensionalities through a commercial multi-mode
fibre.
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Introduction

Large quantum systems are vital resources
for quantum information technologies. High-
dimensional degrees of freedom enable us to
overcome several limitations of qubit encoding.
In particular, high-dimensional photonic quantum
systems allow for large-capacity quantum com-
munications with resistance to noise and loss[1],[2],
enabling entanglement-based technologies that
can operate under realistic environments. In this
scenario, exploiting the resource of entanglement
shared between two spatially separated parties
for communication tasks relies on the complete
characterisation of the shared quantum state.
The conventional approach is quantum state to-
mography, where full knowledge of the state and
its correlations are estimated through measure-
ments and data processing[3],[4]. The reconstruc-
tion of a d−dimensional quantum state without
any a priori information, namely full quantum
state tomography (FQST), is a resource-intensive
procedure where the time required to acquire suf-
ficient data and post-process it can be prohibitive.
The dimension d of the state of n photons scales
as d = dnL, rendering the state space extremely
large even for moderate local dimensions dL.
While state-of-the-art algorithms have allowed for
the reconstruction of a 214 dimensional state in
just 3.5 hours[5], the extreme experimental and
computational burden of performing tomographi-
cally complete measurements renders FQST for
very large systems impractical and unscalable.

The performance of tomographic methods can
be improved with some prior information about
the state, which can be extracted, for exam-
ple, from the physical properties of the quantum
systems in the laboratory. However, bi-photon
states distributed through unknown communica-
tion channels may not possess a well-defined
structure. As a result, prior information about

them is limited, which makes their efficient char-
acterisation challenging. Even so, provided that
the channel is relatively coherence-preserving,
the states tend to be of low rank, allowing the
use of Compressive Sensing (CS) quantum state
tomography (QST), which requires much fewer
measurements than FQST.

Conventional computational methods for CS-
QST involve semi-definite programming (SDP)
and face a number of bottlenecks preventing their
application to higher dimensional systems. In
contrast to SDP, projected gradient descent algo-
rithms are promising alternatives for addressing
higher dimensional systems[6]–[9], but the compu-
tational burden of storage and operations on the
entire density matrix limits their practicality. While
factored gradient descent methods[10],[11] over-
come some of these limitations, they can still be
computationally expensive when trying to recon-
struct completely generic states[12],[13]. Moreover,
the accessible measurements on bipartite states
are restricted to local measurements of each pho-
ton and standard projective measurements com-
prise complete orthonormal bases, further con-
straining the available reconstruction algorithms.

Here we address the outlined challenges with a
bespoke factored gradient descent algorithm for
CS-QST suitable for application on distributed bi-
photon states of low-rank. Our technique allows
us to demonstrate quantum state reconstruction
in composite dimensions up to 131 × 131. Us-
ing the state estimate, we are able to harness
record-dimensionality entanglement between the
two parties by tailoring our measurement bases
to improve both the quality of the state and the
efficiency of the data acquisition.

Methods
Experimental apparatus - As illustrated in
Fig. 1(a), we use a 405nm laser to pump
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Fig. 1: (a) A laser source at 405 nm pumps a ppKTP crystal to produce a pair of photons, which are separated using a polarising
beam splitter (PBS) and directed to two parties, Alice and Bob. In the first configuration, the photon at Bob’s side is directly
measured, leading to a strongly correlated state. In the second configuration, Bob’s photon travels through a multi-mode fiber
(MMF) that scrambles the correlations. Both parties perform a set of projective measurements by displaying holograms as shown
in (b) using a spatial light modulator (SLM1/2) and coupling the respective photon into a single-mode fiber (SMF). A coincidence
counter (CC) correlates the time of arrival of both photons resulting in a correlation matrix, an example of which is shown in (c).

a ppKTP crystal and generate pairs of pho-
tons through multi-modal type-II spontaneous
parametric down-conversion (SPDC). This high-
dimensional entangled state is then directed to
parties Alice and Bob using a polarizing beam
splitter (PBS).

We first tackle the reconstruction of a low-rank,
strongly correlated state. For this, each party
performs measurements just after separating the
photons with the PBS. Second, we apply our
methods to reconstruct a state with no correla-
tion structure by sending one of the parties of the
high-dimensional entangled state through a ran-
dom scattering medium. In this case, the initial
correlations are “scrambled” when we inject one
of the photons into a multi-mode fibre (MMF) be-
fore sending it to Bob.

Both parties perform local measurements by
projecting the state on a desired mode us-
ing a spatial light modulator (SLM) and subse-
quently coupling to a single-mode fibre (SMF).
We choose 131 hexagonally packed macro-pixels,
as shown in Fig. 1(b), as a standard local basis
for all projective measurements performed by Al-
ice and Bob. For the state tomography, we per-
form a set of randomized measurements that are
constructed from the hexagonal macro-pixels. An
example of a randomized measurement is shown
in Fig. 1(c), which we then process using our CS
algorithm to recover a set of Schmidt bases for
each eigenvector of the estimated state.

Compressive Sensing Algorithm - Our CS-QST
algorithm efficiently obtains a state estimate from
data obtained from local, complete, orthonormal
measurements on a high-dimensional bipartite
state, ρ. The sampling operator, M(ρ), describ-

ing how data, y, is obtained from the measure-
ments, {Πm}m, exploits the tensor product struc-
ture of local measurements allowing it to be effi-
ciently stored as sets of local vectors on the 131-
dimensional space of each photon, unlike in the
case of global random measurements that would
require a 1312 dimensional space. We aim to min-
imize the least-squares cost function,

min
ρ≥0

f(ρ) := 1
2 |y −M(ρ)|2F . (1)

The factored gradient descent method relies upon
the representation of the low-rank, d × d density
matrix, ρ, as the product ρ = AA†, where A is a
d × r matrix and the rank r << d. This factorisa-
tion permits efficient storage of the state, as well
as efficient calculation of the gradient, ▽Ag(A),
where g(A) := f(AA†), allowing us to perform the
iterations

At+1 = At +▽g(At)ηt. (2)

Finally, at each iteration, we perform a singular
value decomposition of At, and then (instead of
fixing a scalar step size), we perform a local min-
imisation over the elements of a diagonal r × r
matrix η. This has similar benefits to line-search
methods, whilst it also fixes slow convergence
rates encountered for ill-conditioned factored gra-
dient descent problems[13].

Results
In order to experimentally validate our state re-
construction, we perform a new set of measure-
ments in the Schmidt basis of the first eigenvec-
tor of the state, which results in very strong cor-
relations. The state is predominantly supported
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Fig. 2: Normalised two-photon coincidence matrix in the com-
putational (COMP) and mutually unbiased basis(MUB) using
the first 95 Schmidt vectors of the reconstructed strongly cor-
related state. We certify 60-dimensional entanglement using
this measurement.

on the leading Schmidt vectors, with lower ampli-
tude on the trailing Schmidt vectors. This invites
truncating the state into lower dimensional sub-
spaces in which the majority of the entanglement
is contained and the photons will be found with
the highest probability. Additional sets of mea-
surements in a basis mutually unbiased (MUB)
with respect to the Schmidt basis allow us to lower
bound the fidelity of the now correlated state to a
chosen maximally entangled state in these sub-
spaces, allowing us to certify their entanglement
dimensionality[14].

Tab. 1: Certified entanglement dimensionality (dent) and fi-
delity bounds F(ρ, |Φ+⟩) of the reconstructed strongly cor-
related state via measurements in the Schmidt basis and its
MUB.

d dent F(ρ, |Φ+⟩)
5 5+0

−0 90.0± 0.6%
15 13+0

−0 83.6± 0.8%
25 20+1

−0 79.6± 1.1%
35 28+0

−1 78.3± 1.4%
45 35+1

−1 76.7± 1.6%
55 42+0

−1 74.6± 1.7%
65 47+2

−1 72.2± 1.8%
75 53+1

−2 69.5± 1.8%
85 57+1

−2 66.0± 1.7%
95 60+2

−1 63.0± 1.6%

Table 1 tabulates the certified dimensionality
from the two-basis measurements in various dif-
ferent subspace dimensions. We certify up-to
60-dimensional entanglement in a 95-dimensional
subspace via the correlation measurements as
displayed in Fig. 2, showing significant improve-
ments in state fidelity and dimensionality over
state-of-the-art high-dimensional sources[15].

Table 2 tabulates the certified dimensionality of
the unscrambled state recovered after the MMF
in various different subspace dimensions. Corre-
lations of a scrambled state out of the MMF would
be completely random, resembling a structure
shown in Fig. 1(c). By performing state recon-
struction, we are able to unscramble these corre-
lations, recovering up to 26-dimensional entangle-
ment in a 53-dimensional subspace via the mea-
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Fig. 3: Normalised two-photon coincidence matrix in the com-
putational (COMP) and mutually unbiased basis (MUB) using
the first 53 Schmidt vectors of the reconstructed scrambled
state after the MMF. We certify 26-dimensional entanglement
using this measurement.

surements displayed in Fig. 3. This demonstra-
tion shows an improvement in the entanglement
dimensionality of a state unscrambled through a
scattering medium by significant margins[16],[17].

Tab. 2: Certified entanglement dimensionality (dent) and fi-
delity bounds F(ρ, |Φ+⟩) of the reconstructed unstructured
state after the MMF via measurements in the Schmidt basis
and its MUB.

d dent F(ρ, |Φ+⟩)
5 5+0

−0 84.3± 0.4%
7 6+0

−0 79.2± 0.4%
13 10+0

−0 73.7± 0.5%
23 16+1

−0 69.4± 1.1%
31 21+0

−1 64.6± 1.7%
41 24+1

−1 56.2± 2.5%
53 26+2

−2 47.5± 3.6%

Conclusion
We have demonstrated the ability to charac-
terise generic, high-dimensional, bipartite quan-
tum states and used this knowledge to harness
their entanglement after transport through a noisy
optical channel comprising a commercial multi-
mode fibre. These methods will enable the
deployment of high-dimensional entanglement-
based communication across realistic network
links.
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