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Abstract We propose two new cost functions for the best-match search in a chromatic dispersion (CD) 

estimator based on the power distribution of the time-domain signal samples. They can supplement the 

conventional peak-to-average power ratio (PAPR) based metric to achieve more robust CD estimation. 
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Introduction 

In coherent optical communication systems, 

chromatic dispersion (CD) can be compensated 

effectively in digital domain as part of the 

receiver-side digital signal processing (DSP). 

The amount of the accumulated CD can be 

estimated using various methods [1-8]. Some of 

these methods rely on a “best-match search” 

process, i.e., they calculate certain cost functions 

after applying different test CDs to the signal, and 

these cost functions are expected to show a 

maximum or minimum value when the test CD 

matches the actual one. Although these best-

match-search-based methods seem time-

consuming, they are generally robust and more 

implementable [2].  Specifically, the author of [6] 

proposed to use the peak-to-average power ratio 

(PAPR) of the test-CD-compensated signal as 

the cost function, which is simple and works well 

under various system conditions. However, this 

approach is less effective for signals with 

probabilistic constellation shaping (PCS). One 

explanation is that the PAPR of the non-

dispersed waveform tends to increase in the 

scenarios with PCS, meaning that its difference 

relative to the PAPR of the dispersed signal 

becomes less significant, as shown in Fig. 1(a). 

In this paper, we propose two new cost 

functions for the best-match search of the CD 

estimation (CDE), which, similar to the PAPR 

based approach, work on the time-domain (TD) 

signal samples. Our objective is to extract more 

information from the signal’s sample power 

distribution while the conventional PAPR based 

method merely focuses on the peak power. As a 

result, the estimator’s robustness is expected to 

be improved.  

Principle 

In coherent optical communication systems, 

sufficient amount of CD makes the amplitude 

distribution of each TD signal tributary close to a 

Gaussian distribution. One such example is 

illustrated in Fig. 1(b), where XI represents the in-

phase component of the X-polarization. In this 

example, CD is the only system impairment 

added to a 90-Gbaud, root-raised-cosine (RRC) 

pulse-shaped 16-QAM signal. The roll-off factor 

of the pulse shaping is 0.2, and the over-sampling 

rate of 1.25. Correspondingly, if we assume there 

are no impairments causing correlation or 

imbalance between signal tributaries, the power 

of the dual-polarization complex samples 𝑝𝑛 

should follow a Chi-square distribution with 4 

degrees of freedom, as shown in Fig. 1(c). In this 

work, we will call such power distribution the 

“hypothesized power distribution (HPD)”, and it 

happens when sufficient amount of CD is applied 

to the signal. On the other hand, we call the 

sample power distribution at zero CD the 

“intrinsic power distribution (IPD)”. It is related to 

the signal pattern itself as well as the system 

configurations other than CD, and it is typically 

different from the HPD. It is noted that although 

we start from the assumption of an “ideal” system 

while in practice various system impairments will 

smear the gap between the HPD and the IPD, we 

found that some distribution differences may still 

be observable with practical types and amounts 

of impairments, as shown in Fig. 1(c). Therefore, 

we can define a divergence term representing the 

difference between the HPD and the sample 

power distribution under a specific test CD 

(PDuT). Then during the best-match search, this 

divergence term is supposed to be the most 

significant when the PDuT is the closest to the 

IPD, or equivalently, the test CD is the best match 

of the actual CD. In this work, we elaborate two 

specific proposals motivated by this idea. These 

new metrics can further be combined with the 

PAPR term to construct the cost function, and the 

diagram of one such example is shown in Fig. 2. 

In the first proposal, we define the divergence 

term based on the number of “small-power 

samples”, as in Fig. 1(c) we observe the 

probability density of the IPD is lower than the 

HPD in the low-power region. Specifically, we will 

count the number of samples whose power is 

smaller than a pre-defined threshold 𝑝𝑡ℎ , i.e., 

count{𝑝𝑛 < 𝑝𝑡ℎ}, and 𝑝𝑡ℎ can be optimized based 
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on the actual sample power distributions. Finally, 

the divergence term is defined as 𝐷 =
1 count{𝑝𝑛 < 𝑝𝑡ℎ}⁄ . 

In the second proposal, we evaluate the 

goodness of fit between the HPD and the PDuT. 

Specifically, we first obtain a distribution’s 

empirical cumulative distribution function (CDF) 

based on K bins, as shown in Fig. 3. Ignoring 

some re-scaling factors, this process is similar to 

counting the number of samples with power 

smaller than a threshold (as in the first proposal), 

but now we will define multiple thresholds with 

appropriate spacing as (𝑝𝑡ℎ,1, 𝑝𝑡ℎ,2, ⋯ 𝑝𝑡ℎ,𝐾). Next, 

we obtain a vector of “counts” as 𝑵⃗⃗ =
(𝑁1, 𝑁2⋯𝑁𝐾), where 𝑁𝑘 = count{𝑝𝑛 < 𝑝𝑡ℎ,𝑘}, 𝑘 =

1,2,⋯𝐾. The divergence term is then calculated 

as [9] 

𝐷 =  ∑
(𝑁𝑃𝐷𝑢𝑇,𝑘 − 𝑁𝐻𝑃𝐷,𝑘)

2

𝑁𝐻𝑃𝐷,𝑘(𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁𝐻𝑃𝐷,𝑘)

𝐾

𝑘=1

(𝑁𝐻𝑃𝐷,𝑘 − 𝑁𝐻𝑃𝐷,𝑘−1) 

where the subscripts “PDuT” and “HPD” mean 

the counts are for the PDuT and for the HPD 

respectively, 𝑁𝑡𝑜𝑡𝑎𝑙  is the total number of 
samples, and 𝑁𝐻𝑃𝐷,0 is 0. Note that to obtain the 

HPD, we need to generate a reference signal that 

carries a sufficient amount of CD, and this can be 

realized by applying an “unrealistic CD” to the test 

signal. Simulation (not shown here) indicates that 

satisfactory results can be achieved with K < 10, 

meaning that this second proposal can also be 

implemented with reasonable complexity. 

It is noted that essentially the PAPR based 

metric also utilizes the signal power distribution, 

but it only focuses on the high-power range. On 

the other hand, in our proposals, we extract more 

information from the low-power range or even the 

entire distribution. 

Experiment 

The system for a proof-of-concept experiment is 

outlined in Fig. 4. The symbol rate was 90 Gbaud. 

The single-carrier signals under test had different 

entropies with a 16-QAM base constellation, and 

the entropies here were simply calculated based 

on the symbol probabilities. To construct the 

transmitted waveforms, the symbols were first 

generated offline block-wise, and each block of 

128 symbols had constant composition of symbol 

magnitudes. The only exception was the test 

case with an entropy of 4 where each symbol was 

generated independently. After up-sampling and 

  
                           (a)                                                             (b)                                                                 (c) 

Fig. 1: (a) PAPR of different tested PCS-16-QAM waveforms; (b) an example of the amplitude distribution of the XI samples 

with different amounts of CD; (c) an example of the power distribution of the dual-polarization complex samples with 

different amounts of CD. 

 

Fig. 3: Approximation of a distribution’s CDF. 
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Fig. 2: One example of combining the proposed metrics with 

PAPR. w1 and w2 represent the weights of the two terms. 
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Fig. 4: Experimental setup. CDM: coherent driver modulator; 

VOA: variable optical attenuator; LO: local oscillator. 
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RRC pulse shaping, the digital samples were 

uploaded to an arbitrary waveform generator 

(AWG) and further modulated to the optical 

signal. This test channel was then combined with 

an amplified spontaneous emission (ASE) source 

which contained two 400-GHz noise bands, and 

the test channel was located in the middle of the 

200-GHz gap between the two noise bands. The 

wavelength selective switch (WSS) was 

configured to make the test channel and the ASE 

bands have similar power spectral density. 

Afterwards, the combined signal was launched to 

a 12-span link, and each span consisted of ~75 

km of standard single mode fiber and an optical 

amplifier. The launched power to the link was 

optimized based on the overall system 

performance.  At the receiver, the test channel 

was selected by a 100-GHz optical bandpass 

filter (OBPF) before it was detected by an 

integrated coherent receiver (ICR). A digital 

storage oscilloscope (DSO) then captured 4 

million samples for each signal tributary at 160 

GS/s. Finally, the received digital samples were 

down-sampled and processed by different CDE 

methods.  

Based on the system parameters, we chose a 

CD scan range of 0 – 20,000 ps/nm and a scan 

step of 50 ps/nm. To emulate the real-time data 

flow in a practical system, we used a randomly 

located window to select 64,000 samples out of 

the entire captured sequence for each test CD, 

and this avoids using identical data patterns 

repeatedly. Afterwards, the middle 48,000 

samples were used for cost function calculation. 

In the PAPR based method, the PAPR term was 

calculated every 480 samples, and these 

numbers were then averaged before serving as 

the cost function.  

From the experiment results in Fig. 5(a), we 

observe that all the methods provide a CDE of 

around ~15,100 ps/nm when the entropy of the 

tested signal is 3.5. These CDE values are 

reasonable as they match the link parameters. 

However, all the methods tend to be less effective 

when the entropy decreases to 2.8 and even 

return incorrect results occasionally. For further 

comparison of different methods, we take the 

reciprocal of the PAPR term so that the 

corresponding cost function curve shows a peak 

at the correct CD. Then we offset the cost 

functions of all the methods such that the “noise 

floors” of the curves have zero mean. After these 

manipulations, we define a metric called peak-to-

noise ratio (PNR) by comparing the magnitudes 

between the peak of the cost function curve and 

the most significant interferer. Fig. 5(b) illustrates 

the PNR definition with a specific example. The 

PNRs of different methods averaged over 100 

test cases are summarized in Fig. 5(c). 

Statistically, both proposals outperform the 

PAPR based method over the entire entropy 

range under test. A specific test case is also 

studied in depth in Fig. 5(b). For an easier 

comparison, all cost function curves are re-scaled 

such that their noise floors have similar root mean 

square (RMS) values, and the peaks of the 

curves are highlighted by markers. It is observed 

that the cost function curve of the PAPR based 

method only shows a weak peak at the correct 

CD. In contrast, the peaks of the proposed cost 

functions are stronger (although some interferers 

may also get enhanced at the same time).  In 

addition, combining the proposed metrics with 

PAPR also leads to slightly improved PNR in this 

specific test case. 

Conclusions 

We propose two new cost functions for the best-

match search in a CD estimator by extracting 

information other than PAPR from the signal 

power distribution. Their effectiveness has been 

verified experimentally. 

 

     
                             (a)                                                             (b)                                                                (c) 

Fig. 5: (a) CDE when the tested waveform has entropy of 3.5 (top) and 2.8 (bottom); (b) an example of the cost function 

curves of different methods when the entropy of the tested waveform is 2.8; (c) averaged PNR vs the entropy of the tested 

waveforms using different methods. 
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