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Abstract We propose a C+L-band lumped repeater with over-15-dB-gain PPLN-based optical phase 

conjugators and EDFAs to mitigate gain saturation in parametric amplification. The proposed repeater 

achieves ~7-dB NF and uniformizes the SNR variation of 84-channel 640-Gbps signals within 1 dB after 

1120-km G.652.D fibre transmission. ©2023 The Author(s) 

Introduction 

Multiband wavelength-division multiplexing 

(WDM) transmission using C- and L-bands can 

improve optical fibre throughput [1–3]. Optical 

power transition through stimulated Raman 

scattering (SRS) from the shorter band to the 

longer band is one of the main challenges in the 

design of multiband systems. Spectrum pre-

emphasis has often been used to achieve 

uniform linear noise performance over multiband, 

but nonlinear signal distortion caused by optical 

Kerr effect in the emphasized short-wavelength 

channels restricts the total fibre-launched power. 

Numerical optimization techniques for the 

launched channel powers considering the fibre 

nonlinearities have thus been studied [4]. 

The optical parametric amplifier (OPA) has 

attracted attention because of its wide-gain 

bandwidth [5–8]. When amplifying a signal, the 

OPA generates phase-conjugated light (idler 

light) with an inverted spectrum at a band 

symmetric to the centre wavelength of the gain 

band λc. Utilizing the idler light, an OPA can 

function as an optical phase conjugator (OPC) 

and a wavelength converter [9–13]. The optical 

phase conjugation is performed at optical 

repeater sections to mitigate fibre nonlinearities 

and chromatic dispersion (CD). In addition, 

wideband spectral inversion can mitigate the 

differences in the transmission performance 

between the bands—for example, those induced 

by the SRS [14,15]. OPC typically requires a 

reserve band for idler light, but a complementary 

spectrally inversed (CSI) configuration using two 

OPCs in parallel has been proposed [9–11]. 

Another challenge is that an OPC with low-

conversion efficiency causes excessive linear 

noise. A phase-conjugation system without the 

linear noise penalty was demonstrated by 

combining a loss-less CSI-OPC using high-

efficiency periodically poled LiNbO3 (PPLN) 

waveguides with distributed Raman amplification 

in the C-band [16]. Recently, we developed a 

PPLN-based OPA capable of amplifying a 

wideband signal with high gain and demonstrated 

WDM transmission over 14 THz [17]. In the high-

gain region of the OPA, idler light is generated at 

the same optical power as the signal light [8], so 

the wideband OPC with a higher-conversion gain 

can also be achieved. However, a challenge in 

both the OPA and OPC is the gain saturation, 

which causes nonlinear signal distortion and 

restricts the output power [18]. 

In this paper, we propose a C+L-band hybrid 

optical lumped repeater cascaded PPLN-based 

CSI-OPC and erbium-doped fibre amplifiers 

(EDFAs). The conversion gain of the PPLN-

based OPC is utilized as a part of the repeater 

gain, and thus, the linear noise penalty can be 

suppressed. The low noise figure (NF) of the 

PPLN-based OPA regardless of wavelength [19] 

and the effect of the OPC on averaging the 

impact of SRS are what enable the uniform 

transmission performance over C+L-band to be 

achieved. Moreover, by using EDFAs as post-

amplifiers, a high-output power can be obtained 

without excess distortion. We apply the proposed 

repeater with over-15-dB-gain PPLN-based CSI-

OPC to C+L-band transmission in an 80-km-span 

G.652.D single-mode fibre (SMF) link and 

confirm the uniform transmission performance in 

the 84-channel 640-Gbps WDM signal after 

1120-km transmission.  

Proposed repeater configuration 

Figure 1 shows our proposed repeater using the 

PPLN-based CSI-OPC which consists of 

polarization-diverse OPAs [7] and EDFAs. The 

WDM signal is divided into C- and L-bands with a 

WDM coupler and then input to the OPCs. In 

addition to converting the input signal to phase-

conjugated light, the high-gain OPC also serves 

as a pre-amplifier in the repeater. The λc in the 

OPCs is allocated at the border between the C- 

and L-bands, and the idler light is generated in 

the other band (i.e., not the input band) by means 
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of spectral inversion. The output of the OPCs 

consists of both original and phase-conjugated 

components. The gain equalizers (GEQs) extract 

only the phase-conjugated light while equalizing 

the spectra. The phase-conjugated signals are 

amplified with C- or L-band EDFA as a post-

amplifier. Our PPLN-based OPA and OPC 

provide a flat NF spectrum around 5 dB even in 

the L-band and other bands [19]. The NF of the 

optical repeater strongly depends on that of the 

pre-amplifier, and thus, the high-gain OPC 

provides a flat linear noise performance over the 

C- and L-bands. We measured the conversion 

gain of the OPC and the total NF of the proposed 

repeater. The λc in our PPLN waveguides was 

1572.9 nm (190.6 THz) [19]. The post-EDFA for 

the L-band was the phosphorus-co-doped EDFA 

[20]. Input probe light containing 50-GHz-

bandwidth frequency bins with 100-GHz spacing 

was generated using amplified spontaneous 

emission (ASE) and a wavelength-selective 

switch (WSS).  The input power was 2 dBm and 

a programmable GEQ with the ~6-dB insertion 

loss was implemented so that the output 

spectrum was flattened. We also measured a 

case where OPA was not operating as OPC 

(OPA-EDFA case). Figure 2 shows the 

measurement results, where we can see that a 

>15-dB conversion gain and the flat repeater NF 

of 6.3–7.4 dB were obtained within 1529.1–

1619.6 nm regardless of C- or L-band. There was 

no difference in total NF between the OPA-EDFA 

and OPC-EDFA cases, indicating that there is no 

linear noise penalty from the application of OPC. 

Experimental setup for WDM transmission 

We conducted WDM transmission using the 

proposed repeater with the experimental setup 

shown in Fig. 3. The channel under test (CUT) 

was modulated with 96-Gbaud probabilistically 

constellation shaped (PCS-) 36QAM [7]. Its 

entropy after polarization-division multiplexing 

was 8.87 bits. Interference WDM signal with 100-

GHz spacing was emulated using ASE from C- 

and L-band EDFAs. The bandwidth of the WDM 

signal was up to 4.2 THz (42 ch.) per band 

(1529.16–1562.64 nm and 1583.69–1619.62 nm). 

The interference channels were spectrally 

shaped and combined with the CUT using a WSS. 

The transmission line was an 80-km G.652.D 

SMF. In the proposed repeater, loop-

synchronous polarization scramblers (LSPSs) 

were implemented, and thus, the repeater NF 

was slightly degraded compared to the measured 

values in the previous section. The OPA-EDFA 

and OPC-EDFA cases can be changed by 

swapping the paths from the OPAs to the GEQs. 

The CUT was demodulated by offline digital 

signal processing (DSP) based on an 8 × 2 

adaptive equalizer with periodically inserted pilot 

symbols [21]. A normalized generalized mutual 

information (NGMI) and signal-to-noise ratio 

(SNR) were calculated from the demodulated 

signal. The net data rate of the signal was 640 

Gbps/ch. with an NGMI threshold of 0.857 

assuming a 1.64% pilot rate according to Ref. [7].  

Transmission results 

First, we compared the proposed repeater with 

the OPA-cascaded configuration in terms of 

power tolerance including the gain saturation of 

the OPA. The tested signal was an only-C-band 

42-channel WDM signal, and the CUT was the 

centre channel at 1545.3 nm. The OPA was not 

operated as an OPC, but just as a pre-amplifier. 

Figure 4(a) shows the fibre-launched power 

characteristics of the SNR after 1120-km 

transmission. As the input power increased, the 

signal was degraded due to not only fibre 

nonlinearities but also the gain saturation in the 

OPA. This was particularly evident in the OPA-

OPA case, where the high-power signal input to 

the post-OPA resulted in a degraded power 

 
Fig. 1: Proposed repeater configuration. 

 
Fig. 2: Amplification and conversion gain spectrum of PPLN-

based OPA and total NF of proposed repeater. 
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Fig. 3: Experimental setup. ECL: external cavity laser, IQM: 

I/Q modulator, PDME: polarization-division-multiplexing 

emulator, VOA: variable optical attenuator, SW: switch.  
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tolerance. In contrast, in the proposed 

configuration (OPA-EDFA), since the high-output 

power was provided by the post-EDFA, the power 

tolerance was improved by ~1.5 dB. Next, we 

tested the C+L-band transmission of seven 

channels per band (1542.5–1548.1 nm and 

1598.4–1604.4 nm) to verify the mitigation effect 

of the proposed repeater for the fibre nonlinearity. 

The power tolerance was compared between 

using the OPA as an OPC and just as a pre-

amplifier. Figure 4(b) shows the SNR after 1120-

km transmission at the centre channels in the C- 

and L-bands. In the OPC-EDFA case, the power 

tolerance was improved by ~2 dB compared to 

the OPA-EDFA case, which indicates that the 

adjustable range of the channel power in the pre-

emphasis can be extended. The SNR was also 

improved by ~0.5 dB for the C-band signal and 

by ~0.3 dB for the L-band signal. There was no 

linear noise penalty due to the OPC since the 

SNRs were matched in the low-power region.  

Finally, we conducted 84-channel C+L-band 

WDM transmission. Figure 5 shows the spectrum 

of the WDM signal at the input and output of the 

transmission fibre. We pre-emphasized the 

optical spectrum of the WDM signal so that the 

fibre-output spectrum was flattened over the C- 

and L-bands considering SRS. The total fibre-

launched power was restricted to 21.5 dBm in this 

setup. Figure 6 shows the transmission distance 

dependence of the NGMI for representative 

channels allocated at both ends and in the centre 

of each band. In the OPA-EDFA case, ch. 1 was 

affected by fibre nonlinearities due to high-input 

power with pre-emphasis. In the OPC-EDFA 

case, all channels showed almost the same 

characteristics. The achievable transmission 

distance of ch. 1 was improved by about 1.5 

times by averaging out the performance with ch. 

84. In addition, the CD was mitigated by the OPC 

from ~24600 ps/nm to ~4120 ps/nm after 1120-

km transmission for ch. 84 (the longest 

wavelength channel). Nonlinear mitigation effects 

could not be clearly identified due to the low-

channel power in the full-WDM configuration. 

Figure 7 shows the measurement result of all 84 

channels after 1120-km transmission. As we can 

see, NGMIs of all channels were better than the 

threshold, and 53.76-Tbps transmission was 

successfully demonstrated. The SNRs were 

uniform within 1 dB thanks to the flat NF spectrum 

and equalization effect of the transmission 

performance between the C- and L-bands. 

Conclusion 

We proposed a C+L-band lumped repeater with 

high-gain wideband PPLN-based CSI-OPC and 

EDFAs. By mitigating fibre nonlinearities and gain 

saturation in the OPA, the improvement in power 

tolerance was shown. We also demonstrated 

C+L-band WDM transmission over 1120 km with 

a uniform transmission performance within 1-dB 

SNR variation over 8.4 THz by averaging the 

effect of SRS. 

 
Fig. 4: SNR after 1120 km transmission as function of fibre-

launched power. (a) 42-ch. only C-band transmission. (b) 14-

ch. C+L-band configuration. 
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Fig. 5: Optical spectra of 84-ch. WDM signal at input and 

output of transmission fibre (0.1-nm resolution). 

 
Fig. 6: Transmission distance characteristics of NGMI for ch. 

1 (1529.5 nm), ch. 21 (1545.3 nm), ch. 42 (1562.2 nm), ch. 43 

(1583.7 nm), 1601.4 nm), and ch. 84 (1618.7 nm). (a) in OPA-

EDFA case. (b) in OPC-EDFA case.  

 
Fig. 7: NGMI of all 84 channels after 1120 km transmission. 
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