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Abstract Recent work has reported on the excellent performance of spiking neural networks (SNN)
for signal processing in optical transceivers. In this work, we discuss the challenges of evaluating SNN
throughput and power consumption, present first results, and discuss future steps. ©2023 The Author(s)

Introduction
To sustain the exponential growth of data cen-
ter traffic, optical transceivers need to evolve to-
wards higher rates, smaller footprint and lower
power consumption, at the same time. To achieve
these challenging goals, recent research envi-
sions moving parts of digital signal processing
(DSP) to analog frontends with lower power con-
sumption.

Photonic neuromorphic computing[1] has been
proposed, e.g., for fiber non-linearity compen-
sation[2], as well as for chromatic dispersion
(CD) compensation and nonlinear equalization in
short-reach optical transmission[3]–[5].

Also, a return to analog adaptive equalizers has
gained traction, e.g., in[6], the transmitter DSP
feeds two electrical non-return-to-zero (NRZ) sig-
nals to an analog pulse-amplitude-modulation 4-
level (PAM-4) encoder, whose output is filtered by
a continuous time linear equalizer (CTLE) and a
3-tap feed forward equalizer (FFE). In[7], analog
finite impulse response (FIR) filters are used to
adaptively equalize an NRZ signal.

At the same time, the research community aims
for implementing more powerful algorithms, e.g.
based on artificial intelligence (AI) techniques, on
analog electronics. An important subfield is in-
memory-computing (IMC)[8], which aims for effi-
cient calculation of vector-matrix multiplications.
Research on IMC is mainly driven by the ur-
gent need of AI accelerators for making inference
by artificial neural networks (ANNs) more power-
efficient. Analog electronic neuromorphic com-
puting offers a disruptive path towards AI-based
signal processing. Imitating the functioning of the
human brain, spiking neural networks (SNNs)[9]

in analog hardware[10] combine IMC with sparse
representation of information by spiking signals.
Several startup companies are currently com-
mercializing SNNs on neuromorphic hardware,

mainly in the area of low power sensors.

SNN Equalization: Performance
Our aim is to evaluate the SNN technology as en-
abler for reducing footprint and power consump-
tion of optical transceivers. In[11], we show by sim-
ulation in the Norse software[12] that SNNs allow
for competitive nonlinear detection of PAM4 sig-
nals in IM/DD links. Similar results are reported
in[13],[14]. In the follow-up works[15],[16] we show
that the detection capability of SNNs is preserved
when they are executed on the analog neuromor-
phic BrainScaleS-2 (BSS-2) hardware platform[10]

by using hxtorch.snn[17]. Finally, in[18], we report
an optical transmission experiment with succesful
SNN detection in offline processing.

SNN Equalization: Throughput and Power
Consumption
The existing results show the algorithmic suitabil-
ity of SNNs. The challenge is now to evaluate
(Q1) whether SNNs can meet the throughput re-
quirements, and (Q2) whether they provide the
promised power savings.

The successful realization in analog hardware
as reported in[15],[16] only provides limited an-
swers to the questions Q1 and Q2. The BSS-2
application-specific integrated circuit (ASIC) pro-
vides a neuromorphic platform for a wide range of
applications and with a rich periphery for monitor-
ing, training, and deployment of new SNN mod-
els. Consequently, the circuitry is highly config-
urable and designed for flexibility rather then effi-
ciency, the throughput is slowed down, and con-
trol and monitoring signals contribute significantly
to the power consumption.

In this presentation, we discuss the key chal-
lenges in assessing the potential of the SNN tech-
nology in terms of throughput and power con-
sumption. We present first results and discuss
future steps.
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