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Abstract We propose an end-to-end EDFA gain model using denoising CNN. Our proposed model 
achieves state-of-the-art performance on both the same device used for training and different physical 
units of the same make, with the lowest RMSEs compared to conventional CNN and previously-reported 
NN schemes. ©2023 The Author(s). 

Introduction 
The ever-increasing demand for higher data 
transmission rates in contemporary 
telecommunications infrastructure has put 
considerable pressure on long-distance and 
regional fibre optic networks. In order to 
counteract signal attenuation during 
transmission, erbium-doped fibre amplifiers 
(EDFAs) are extensively employed to boost 
optical signals. Consequently, precise modelling 
of the EDFA gain profile becomes crucial for 
effective network topology management and 
capacity optimisation [1]. Inaccurate models may 
result in substantial discrepancies between the 
predicted signal power and the actual power, 
which can potentially cause error accumulations 
in optical transmission links containing multiple 
EDFAs. Therefore, it is of paramount importance 
to develop a highly accurate EDFA gain model. 

Neural networks (NN), specifically multi-layer 
perceptron (MLP), have been extensively utilized 
for EDFA gain modelling in various studies [2-5]. 
Previous research [2-3] has predominantly 
concentrated on training and testing using the 
same EDFA device. However, employing the 
gain model derived from one device on others 
may lead to diminished accuracy owing to 
differences in device characteristics. 
Consequently, enhancing the generalization 
capability of machine learning-based EDFA gain 
models is of vital importance in order to tackle this 
issue. 

In [4], a differentiable neural network model 
was introduced to achieve more precise 
modelling by employing three times the typical 
amount of training data. This model 
demonstrated a reduction in mean square error 
(MSE) from approximately 0.06 to 0.02 dB², 
corresponding to a decrease in root mean square 
error (RMSE) from 0.25 dB to 0.14 dB. 
Furthermore, in [5], an auxiliary neural network 
was proposed to diminish discrepancies among 
different EDFAs by conducting retraining with a 
limited amount of data. Nonetheless, both 

approaches necessitate additional training data 
or a retraining process, which can prove to be 
computationally demanding and may not be 
viable in certain situations. 

In this work, we put forth an end-to-end EDFA 
gain model that capitalizes on a denoising 
convolutional neural network (CNN) with 
remarkable generalization capabilities, without 
necessitating additional training data or re-
training. Our method integrates soft-thresholding-
based denoising transform layers into the CNN 
architecture to enhance both the modelling 
accuracy and generalization capacity. For the 
same device used for training, our model 
achieves an impressive RMSE of a mere 0.05 dB. 
Moreover, due to the robustness reinforced by 
the proposed denoising layers and the local bias 
property of CNN, when transferring the trained 
model to different physical units of the same 
make, the RMSE remains low at 0.05 dB for low 
gain ranges (<15 dB) at 15 dBm output power. 
These results attest to the robustness and 
superiority of our approach in terms of accuracy 
and generalization, as shown in Table 1. 

Fig. 1: Experimental setup for collecting datasets. ASE: 
Amplified Spontaneous Emission, WSS: Wavelength 

Selective Switch, Optical Spectrum Analyzer. 
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Tab. 1: Performance Comparison of EDFA Gain Models 

Model Portability E2E No Extra Data 

NN [2]  √  

Multiple NNs [3]  √  

Differentiable NN [4] √ √  

Auxiliary NN [5] √   

Ours √ √ √ 



  

Denoising enabled by Soft Thresholding 
As a classical signal denoising technique, soft 
thresholding [7] has been extensively employed 
in signal processing over the past decade to 
mitigate noise or suppress minor signal scale. By 
integrating soft thresholding as denoising non-
linear transformation layers into the CNN, the 
learning capability of the neural network can be 
substantially enhanced when dealing with highly-
noisy datasets. Consequently, this improves the 
accuracy of the model for CNN-based EDFA gain 
modelling. Soft thresholding function can be 
expressed by the following equation [8]:  
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where x presents the input feature, y is the output, 
and  is the threshold. Soft thresholding 
maintains the valuable negative or positive 
features whilst suppressing noise by setting near-
zero features to zeros, thereby offering excellent 
denoising capability. To ensure the efficacy of the 
soft threshold's denoising ability, it is essential to 
estimate the threshold appropriately. To achieve 
this, a self-attention mechanism [8-9] is 
incorporated to learn an adaptive threshold. As 
depicted in Fig. 2, a threshold unit comprising a 
global average pooling (GAP), a fully connected 
(FC) layer, and a sigmoid activation function 
(Sigmoid) is employed to implement an attention 
operation and compute an adaptive threshold (). 
It is worth noting that, in order to preserve the 
negative features, the absolute value is utilised in 
threshold learning. Following the soft 
thresholding operation, the resulting features are 
multiplied by the signum function output of the 
original input features. It is postulated that soft 
thresholding could effectively enhance the 
model's accuracy by suppressing noise in the 
input features. 

Dataset and Data Pre-processing 
To assess the performance of the proposed 
model, we conduct experiments using a publicly-
available dataset [6]. Fig. 1 illustrates the 
experimental setup for gathering the datasets 
utilized in training and testing. A wavelength 
selective switch (WSS) shapes the spectrum of a 
fattened amplified spontaneous emission (ASE) 
source, ranging from 191.5 THz to 196.25 THz. 
A1, A2, and A3 denote three distinct booster 
EDFAs of the same manufacturer, respectively. 
One of the three EDFAs (A1, A2, and A3) is fed 
with the shaped spectrum as input, and the 
resulting optical spectra are measured through 
an optical spectrum analyser (OSA). The 
datasets contain input and output power spectral 

density (PSD) profiles, as well as total input (Pin) 
and output power (Pout) pairs. The input PSD 
contains 83 equally-spaced frequency channels 
in the C-band. For each EDFA, the spectra with 
four distinct output powers (15 dBm, 16 dBm, 17 
dBm, and 18 dBm) were measured and included 
in the datasets. To ensure a fair comparison, the 
same pre-processing method as that in [5] is 
applied to the datasets.  

EDFA Model 
The proposed model architecture is shown in Fig. 
2, which comprises three convolutional layers, 
three denoising layers, and one FC layer for 
processing extracted features. The primary 
objective of this model is to accurately extract and 
represent features from the input data while 
effectively reducing noise and achieving more 
precise gain modelling. Each 1-dimensional 
convolutional layer is followed by a batch 
normalization layer designed to learn spatial 
patterns from the input data. The kernel size of 
the convolution is 3, and the stride is 2. The 
corresponding sizes of the feature maps for each 
layer are also illustrated in Fig. 2. As discussed in 
the previous section, the proposed soft-
thresholding can effectively improve the model's 
accuracy by reducing the influence of noise on 
the input data. Finally, the FC layer performs 
regression tasks based on the features extracted 
from the input data, which takes the output of the 
convolution and denoising layers and applies a 
set of weights to produce the final result. 

Performance Investigation 
The performance of the proposed model is 

Fig. 2: The structure of the proposed EDFA gain model 
based on CNN with inserted denoising layers. 
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evaluated by quantifying the predictive accuracy, 
which is measured by calculating the RMSE 
between the predicted output spectrum and the 
corresponding measured spectrum. Two 
experiments are conducted: intra-EDFA, where 
training and testing are performed on EDFA-A1, 
and inter-EDFA, where training is conducted on 
EDFA-A1 and testing is carried out on EDFA-A2 
and EDFA-A3. For performance comparison, 
three models are employed in each experiment: 
the NN proposed in [5], the proposed denoising 
CNN model, and the conventional CNN without 
denoising layers, referred to as CNN here. We 
apply the same pre-processing method to all 
experiments to ensure a fair comparison. 

The intra-EDFA results are shown in Fig. 3(a)-
(d). To ensure the validity of our experiment, a 
cross-validation approach is adopted. 
Specifically, the training dataset is evenly 
partitioned into five portions, corresponding to the 
five folds on the horizontal axis. Four folds are 
used for training, and one is reserved for testing. 
The proposed model consistently exhibits 
significantly lower error than the other two 
models, with a RMSE of approximately 0.05 dB. 
Furthermore, the proposed model demonstrates 
stable performance in cross-validation when 
operating at different power levels. Importantly, 
compared to the CNN model, the proposed CNN 
model with denoising layers significantly 
improves the modelling accuracy, verifying the 
effectiveness of denoising enabled by soft 
thresholding.  

The inter-EDFA performance is presented in 
Fig. 3(e)-(h). Unlike the intra-EDFA experiment, 
the RMSE performance of the inter-EDFA 
experiment exhibits slight dependence on the 
EDFA gain. Nonetheless, the proposed model 
outperforms the other two models for four 
different EDFA output powers. Furthermore, the 
model maintains comparable RMSE when 
transferred to different physical units. For 
instance, when the output power is 15 dBm, the 
RMSE of the inter-EDFA experiment in the low 
gain regime (Gain<15 dB) depicted in Fig. 3(e) is 
comparable to that observed in the intra-EDFA 
experiment shown in Fig. 3(a). This outcome 
indicates the high generalizability of the proposed 
denoising CNN model. 

Conclusions 
A precise, highly-generalizable, robust EDFA 
gain model is proposed based on convolutional 
neural network with denoising layers enabled by 
soft thresholding. Compared to previous work, 
this model demonstrates scalability in end-to-end 
training and does not rely on additional data. This 
precise and scalable EDFA model paves the way 
for broader application explorations. 
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Fig. 3: (a)-(d): Intra-EDFA RMSE for different folds of data with output powers of (a) 15dBm (b) 16dBm (c) 17dBm (d) 
18dBm; (e)-(h): Inter-RMSE vs. Gain with power powers of (e) 15dBm (f) 16dBm (g) 17dBm (h) 18dBm. 
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