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Abstract Digital twin for optical communications with detailed discussion on mirror modelling, data 

collection and analysis, and intelligent control is reviewed. Recent advances with focus on data-physics 

hybrid-driven techniques are presented.  

Introduction 

Digital twin (DT) is gaining popularity in optical 

network to ensure high-reliability operation and 

high-efficiency management, which is the key 

enabling technology for network automation. The 

DT can help bridge the gap between the ideal 

physical layer that is commonly assumed in 

optical communications and physical layer 

behaviour in deployed networks. The roles of DT 

in optical communications haves been performed 

in physical layer mirror modelling, fault 

management, automatic optimization, 

measurement uncertainty estimation, topology 

abstraction, network planning and control, and 

margin reduction.  

The framework of DT in optical network can 

be composed of three parts: mirror modelling, 

data collection and analysis, and intelligent 

control, as illustrated in Fig. 1. First, the 

establishment of DT relies on precise and 

dynamic mirror modelling techniques, which 

necessitate accurate physical layer parameters. 

Thus, real-time data collection and analysis from 

the physical layer are essential to ensure the DT 

can comprehensively characterize the behaviour 

of physical layer. Once established, the DT can 

be utilized for network operation and 

management through intelligent control.  

Different from conventional theoretical 

simulations, the mirror modelling techniques of 

DT require high-fidelity mapping and real-time 

updating, creating a virtual replica of the practical 

physical object rather than a theoretical model [1]. 

In this context, the primary challenge lies in 

accurately and efficiently describing the complex 

impairments and uncertainties along the 

transmission link, introduced by transceivers, 

fibre channels, amplifiers, and various cross-

connection devices. Although significant 

theoretical foundations have been established, 

the primary issue is the high computational 

complexity. Furthermore, the dynamics of the 

developing optical networks results in insufficient 

accuracy of some of the existing modelling 

techniques, expecting the prospective methods 

for DT modelling.   

Real-time and accurate mirror modelling 

techniques require accurate physical layer 

parameters, which can be achieved by capturing 

timely data and abstracting useful information 

from the physical layer. This process is facilitated 

through telemetry, which involves collecting data 

from network devices in real time. In contrast to 

traditional raw data collection from the physical 

layer, more detailed and insightful information are 

required by the DT. Consequently, a data 

analysis unit is required to further analyse the 

collected raw data. This process enables the on-

demand and real-time transmission parameters 

detection for DT modelling and comprehensive 

analysis for seamless control. 

Without DT, classical operation controllers 

can only perform basic management tasks based 

on pre-set functions and metrics. However, by 

harnessing its modelling capabilities and real-

time interfacing with the physical layer, DT can 

effectively predict performance bottlenecks, 

automatically provide optimization strategies, 

and proactively identify potential risks.  The 

capability to simulate, monitor, and manage the 

physical layer in a holistic manner will allow 

network operators to gain valuable insights into 

the behaviour and performance of the network in 

real-time, contributing to the enhanced efficiency 

and reliability. 

In this paper, we reviewed the recent 

advances in DT for optical communications, as 

summarized in Fig. 2. With mirror modelling 

techniques and real-time data collection and 

analysis, DT will empower optical network to 

evolve toward digitalization and automation. 

Mirror Modelling for Physical Layer 

The ultimate goal of mirror modelling is to 

accurately describe the various impairments 

encountered by signals propagating along the 

link, including both the electrical and optical 

domains. Among all the component in the 

transmission link, fibre channel modelling gains 

most attention as it introduces linear and complex 
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nonlinear impairments during the propagation of 

optical signals [2]. The baseline method is solving 

the NLSE by numerical methods, such as the 

SSFM. To reduce the calculation complexity, 

perturbation-based methods for the calculation of 

nonlinear interference (NLI) has been proposed, 

including the Gaussian noise (GN) model [3], 

which has been extensively validated with 

various versions [4,5], and the inter-symbol 

interference (ISI) model [6]. Such methods act a 

suitable quality of transmission (QoT) estimation 

tool, while sacrifice most information of signal 

sequences for fast calculation speed.  

The deep learning (DL) techniques have also 

been explored. Within the context of fibre channel 

modelling, data-driven neural networks with 

diverse structures, including Bidirectional Long 

Short-Term Memory (BiLSTM) [7], Generative 

Adversarial Networks (GANs) [8], and 

transformers [9], have been studied. DL 

techniques have also been explored for other 

component, such as amplifiers and cross-

connection devices [10,11]. However, data-

driven DL methods always suffer from a critical 

issue of unexplainability, which limits their 

reliability and generalization ability.  

To address this challenge, recent 

advancements have introduced physics-informed 

neural networks (PINNs) [12]. These approaches 

incorporate physical laws, such as partial 

differential equations (PDEs), into the loss 

function of neural networks, which requires less 

and even no labelled collection data. PINN 

methods have shown promise in the fields of 

nonlinear optics [13] and optical fibre 

communications [14], where they have 

demonstrated their ability to capture the 

underlying physics, improve the flexibility, and 

relieve the data dependence. Furthermore, 

neural operators, which incorporate the principles 

of the universal approximation theorem for 

operators, have also been employed for channel 

modelling [15]. The utilization of both data and 

prior physics is expected to be a key technique in 

mirror modelling to ensure reliability and 

efficiency and boost the implementation of DT. 

Data Collection and Analysis through 

Telemetry 

To achieve the high-accuracy and dynamic DT 

modelling for optical layer, the real-time data 

collection and comprehensive information 

extraction are necessary, which can be achieved 

by telemetry [16]. For an efficient and unified data 

pulling, a considerable amount of effort has been 

paid into creating standardized interfaces and 

data models [17].  

Once the raw data are collected, some of 

them require further analysis to extract useful 

information for the DT. For coherent transmission 

system, sufficient information can be obtained 

through DSP module. In this context, DL 

techniques have been employed to analyse the 

information provided by DSP-based monitoring 

algorithms and system margin analysis [18,19]. 

Recently, DSP-based longitudinal monitoring 

methods attract much attention and have been 

proved for spatially power profile estimation (PPE) 

[20], and amplifier gain estimation [21]. Anomaly 

losses in the link small to 0.77dB can be identified 

[22]. These methods can be roughly classified to 

correlation method (CM) and minimum mean 

 

Fig. 1: Schematic of the digital twin for optical communications. The data is collected from physical layer in real-time and 

analyzed for mirror modelling, then intelligent control is pushed to the physical layer. 
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square error (MMSE) method. 

Thanks to the incorporation of physical laws, 

PINN-related methods are also well-suited for 

parameter identification within PDEs. This can be 

achieved by updating the inaccurate physical 

parameters along with the weight and bias 

parameters of PINN, which is also constrained by 

physical laws and only minimum measured data 

are required. PINN has been demonstrated for 

the identification of fibre parameters [23]. 

Moreover, the frequency-dependent attenuation 

and Raman spectrum in wideband can be refined 

with PINN leveraging monitored channel powers 

[24].  

Intelligent control: efficient management for 

physical layer 

Based on the real-time data collection and 

accurate mirror modelling of physical layer, the 

DT can implement the intelligent control and 

automatic optimization in network layer. With the 

goal of achieving better performance and lower 

margin, various GSNR optimization methods 

have been proposed, including EDFA 

configuration schemes using searching methods 

[25], gradient descent methods [26], and 

approximated closed-form optimization, 

transceiver configuration using autoencoder [27], 

WSS configuration using neural networks. The 

efficacy of the DT has been verified through 

comprehensive simulations and experiments, 

such as a thorough margin exploration for a large 

network, BER reduction of the most critical 

services, and automatic failure recovery [28]. In 

addition, the DT can also help network operators 

to visualize and control the physical device in an 

intuitive manner. In this connection, some 

interesting applications utilizing virtual/argument 

reality (V/AR) have also emerged [29].  

Data & physics hybrid-driven techniques also 

plays a role in this context. There is a valuable 

prior knowledge gain from GN model that the 

strength of nonlinearity is approximately two 

times of linear noise when the transmission is 

close to its optimal performance (3dB principle). 

This principle can be used to enhance the 

generalization of neural networks for QoT 

estimation and performance optimization [30]. 

This physical insight has also been demonstrated 

to enable efficient channel power optimization in 

S+C+L-band transmission systems. 

Conclusions 

In this paper, recent advances in DT for optical 

communications from the aspect of mirror 

modelling, data collection and analysis, and 

intelligent control were reviewed, as summarized 

in Fig. 2. It can be envisioned with optimism that 

DT will play an important role in the development 

of future optical networks. 
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Fig. 2: Recent advances in digital twin for optical communications. 
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