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Abstract We propose a reinforcement-learning-based multilayer path planning framework that designs
grooming and optical path parameters. Simulation results show that the proposed method can improve
blocking probability by 20 % compared to conventional heuristic methods. ©2022 The Author(s)

Introduction

To accommodate the continuously growing in-
ternet traffic, the field of optical networking has
long addressed the Routing and Spectrum As-
signment (RSA) problem that efficiently assigns
route and frequency resources to optical path de-
mands. In recent years, there have been many at-
tempts to apply machine learning to various tasks
in optical networks. In the RSA problem, research
is underway on using reinforcement learning (RL)
to autonomously learn the optimal optical path
planning through trial and error. In the Wave-
length Division Multiplexing (WDM) layer, several
methods for selecting optical paths and frequency
slots using RL have been proposed and reported
to achieve lower blocking probabilities than the
First-Fit, the simple and basic RSA algorithm[1],[2].

This paper proposes a framework for designing
multilayer paths (MLP) using RL in multilayer net-
works where logical paths such as the IP layer
and Optical Data Unit (ODU) layer are further
accommodated in the optical paths in the WDM
layer. There have already been reported on multi-
layer path design using RL[3], which can appro-
priately select the establishment of new optical
paths and use grooming paths. However, it as-
sumes fixed grid in the WDM layer; therefore,
there is room for further improvement in terms
of frequency utilization efficiency. In contrast, we
propose a multilayer path design framework that,
in addition to selecting grooming paths, allows the
selection of the many operational modes (com-
binations of modulation format and symbol rate)
supported by recent digital coherent transceivers
and frequency slots on the flexible grid. Simula-
tions demonstrated that the RL-based MLP plan-
ning method is superior to conventional heuris-
tic methods. In addition, the Reward, which is

the target parameter for optimization by RL, can
be tailored to the desired requirements, such as
blocking probability and the number of optical
paths.

MLP Planning using Auxiliary Graph
This section provides an overview of the common
MLP design method[4] using the auxiliary graph.
First, an auxiliary graph is constructed upon the
arrival of MLP request. This auxiliary graph is a
composite of the Establishment Candidate Graph
(ECG), a graph whose edges are candidates for
newly established optical paths, and the Groom-
ing Capable Graph (GCG), a graph whose edges
are existing optical paths with enough timeslot re-
sources to accommodate the MLP request. The
optimal solution is the path connecting the source
and destination nodes on the auxiliary graph with
the shortest route. We can determine the location
of new and existing optical paths arbitrarily by set-
ting weights for each edge of the auxiliary graph.
This policy for setting the edge weights is called
the Edge Weight Policy. In addition, to determine
the parameters required for the newly established
optical path, the Spectrum Policy, which deter-
mines the frequency slot, and the Operational
Mode Policy, which determines the transmission
mode consisting of a combination of modulation
format and symbol rate, are used.

Here is an example of a heuristic MLP design
method. In the Edge Weight Policy, H is the
number of hops traversed on the physical topol-
ogy, W (e) = WGCG +H ×WGCG

h , e ∈ E(GCG),
W (e′) = WECG +H ×WECG

h , e′ ∈ E(GCG). For
example, by setting W (e) to be large relative to
W (e′), we can prioritize the use of grooming by
reducing the number of new paths as much as
possible. In this paper, we refer to this policy
as MaxGrooming. The Spectrum Policy is First
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Fig. 1: Proposed MLP planning framework

Fit, the standard RSA algorithm, and the Opera-
tional Mode Policy selects the mode with the high-
est capacity among the modes that can reach the
shortest path between the source and destination
nodes. In this paper, we refer to this policy as
MaxCapacity.

Deep Reinforcement Learning Framework for
MLP Planning
RL is a type of machine learning that repeat-
edly interacts with the Agent, which acts as the
brain to design the MLP and optimizes the Agent’s
policies to maximize the Reward, an indicator of
whether the design is good or bad. Figure 1
shows the multi-layer path design framework us-
ing RL proposed in this paper: the MLP-RL Plan-
ner, which designs MLPs, has two RL Agents that
learn the parameters needed to generate the aux-
iliary graph.

The first is the Edge Weight RL Agent, which
plays the role of the Edge Weight Policy that op-
timizes the edge weights for selecting new opti-
cal paths and existing optical paths on the auxil-
iary graph. The feature vector input to the neu-
ral network representing the Agent’s policies has
a size 2 × N × N × M , where N is the number
of nodes in the physical topology and M is the
number of transmission modes. For each GCG
and ECG, the number of hops that the optical
path corresponding to the edge connecting the
two points goes through on the physical topol-
ogy is expressed in a connection matrix. This
feature vector also has a transmission mode di-
mension, with a value of 0 for edges where the
possible transmission distance for each transmis-
sion mode on the ECG is less than the path of
the optical path candidate. For this feature vec-

tor input, the output of four parameters is WGCG,
WGCG

h , WECG, and WECG
h .

The second is the Slot-Mode RL Agent, which
corresponds to the Operational Mode Policy and
Spectrum Policy that optimize the transmission
mode and frequency slot for each edge of the
ECG. The feature vector input to the neural net-
work includes information about MLP (source and
destination nodes, hop count, the average num-
ber of degrees on the route), operational mode
(difference between transmission distance of the
MLP and the operational mode, difference be-
tween the bit rate of the MLP request and the
capacity of the operational mode, number of op-
tical paths required to accommodate the MLP re-
quest), and frequency slots (frequency slot usage
on the shortest path considering spectrum conti-
nuity constraint). And the output from the neural
network includes information about the transmis-
sion mode and frequency slot to be applied for
the MLP request. Here, if the bit rate of the MLP
request is greater than the capacity of the trans-
mission mode, multiple optical paths are used to
accommodate it.

We assume that two neural network architec-
tures for each Agent are identical for simplicity.
This neural network architecture and feature vec-
tor parameters were determined through trial and
error, but there is room for further improvement in
these hyperparameter designs.

After setting the parameters output from these
two neural networks to each edge of GCG and
ECG, MLP-RL Planner determines the Actions
(MLP including information on existing and new
optical paths) by searching for the shortest route
on the auxiliary graph. The Environment reflects
this MLP in the multilayer network and returns the
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Tab. 1: MLP planning schemes

Heuristic RL-Edge RL-SlotMode RL-All
Edge weight MaxGrooming[4] RL MaxGrooming RL

Operational mode MaxCapacity[4] MaxCapacity RL RL
Frequency slot First Fit First Fit RL RL

200

400

600

800

QPSK 8QAM 16QAM 32QAM 64QAM

37.5

75

1000 km

2500 km

5000 km

500 km

150

B
an

d
w

id
th

 [G
H

z]

1000

1200
100 km

B
it

ra
te

 [
G

b
it

/s
]

Distance

Modula�on format

Mode1
Mode4

Mode7
Mode10

Mode13

Mode2

Mode5

Mode8

Mode11

Mode14

Mode3

Mode6

Mode9

Mode12

Mode15

Fig. 2: Available operational modes[4]

State and Reward values to the MLP-RL Plan-
ner. We can flexibly configure the Reward ac-
cording to the requirements. The MLP-RL Plan-
ner learns the optimal policy using continuously
arriving MLP requests and the multiple States
and Rewards obtained by planning based on the
requests. In this paper, we adopt the widely
proven RL algorithm, Proximal Policy Optimiza-
tion (PPO)[5].

Experimental Setup and Results
We evaluated the effectiveness of the proposed
method by simulation.. The number of MLP re-
quests was set to 3000, with bit rates in 100 Gbit/s
increments from 100 Gbit/s to 400 Gbit/s, and the
arrival and duration of the MLP requests were
assumed to follow Poisson and exponential dis-
tributions, respectively. The evaluated network
was NSFNET (14 nodes), and the frequency slots
available for each link were 12.5 GHz/slot * 160
slots. In addition, 15 operational modes were se-
lectable, as shown in Fig. 2.

The four scenarios were evaluated as shown in
Tab. 1. In contrast to the heuristic method, RL-
Edge used RL for edge weight optimization, RL-
SlotMode used RL for operational mode and fre-
quency slot selection, and RL-All for applied RL
to both of them. We assumed the Reward to be
+1 for successful and -1 for unsuccessful MLP as-
signment to minimize the blocking probability.

To demonstrate the effectiveness of the pro-
posed method, a simulation evaluation was per-
formed. The network topology used was NSFNET
(14 nodes). The number of MLP requests to be
generated was set to 3000, with bit rates in 100
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Fig. 3: Blocking probability versus traffic load

Gbit/s increments from 100 Gbit/s to 400 Gbit/s
occurring between randomly selected points in
equal proportions, and their occurrence and du-
ration following Poisson and exponential distribu-
tions, respectively. The number of optical fibers
between nodes was set to 1 and the available fre-
quency slots were 12.5 GHz/slot * 160 slots.

The four scenarios evaluated were as shown in
Tab. 1. In contrast to the Heuristic, RL-Edge ap-
plies edge weights, RL-SlotMode applies trans-
mission mode and frequency slot selection, and
RL-All applies reinforcement learning to both.

Figure 3 shows the blocking probability against
offered traffic load. The figure confirms that for
Heuristic, RL-Edge, which behaves equivalently
to Heuristic in the WDM layer, is equivalent, while
RL-SlotMode and RL-All can accommodate about
20 % more MLPs, based on a blocking probabil-
ity of 10−2, due to optimization in the WDM layer.
In addition, the state space is very large, espe-
cially for RL-All, so the neural network architec-
tures needs to be further improved to obtain bet-
ter performance.

Conclusions
We proposed an MLP design framework using
RL and confirmed that the accommodative design
method based on this framework could accommo-
date more MLPs by 20 % over the conventional
heuristic method. Furthermore, although we set
the Reward to minimize the blocking probability
in this paper, it is also possible to optimize the
Reward according to various requirements, such
as setting it to reduce the number of new optical
paths.
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