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Abstract A low-complexity multi-symbol complex-valued NN nonlinear-equalizer is proposed and 

experimentally demonstrated in coherent photonics-assisted MMW communication. Effective nonlinear 

compensation is demonstrated for 100Gbps 16-QAM photonic-assisted W-band signal after fiber-

wireless integrated transmission, while the computational complexity is reduced by up to 78.1% 

compared with single-output NN. 

Introduction 

The six-generation mobile network (6G) is 

expected to delivery 100x higher-speed and 

1000x more capacity compared with 5G, based 

on higher frequency spectrum to millimeter-wave 

(MMW) and advanced signal processing 

technologies [1]. Photonic-assisted MMW fibre-

wireless integration is one of the key technologies 

that enables ultra-high-speed access and also 

seamless ultra-dense coverage with current fiber 

networks [2].  In these systems, advanced 

equalization schemes are generally applied to 

overcome the nonlinear impairments when 

operating at 100G and beyond high-speeds [3].   

As artificial intelligence (AI) has become one of 

the cornerstones of 6G, neural networks (NN) 

has attracted more and more research interests 

in recent years thanks to its superior performance 

in channel impairment equalizations [4]. However, 

the computation complexity of NN is still one of 

the challenges for future practical applications [5]. 

Many studies have been done for relevant 

analyses of various kinds of NN in terms of 

computational complexity [5-7]. Additionally, 

simplification of NN equalizers have also been 

proposed to reduce the computational complexity, 

by using multi-symbol output NN equalizer [8,9]. 

However, both [8] and [9] is focused directly-

detected (IM/DD) systems, where real signals are 

equalized. For photonic-assisted MMW 

communication based on coherent optics, study 

of simplified NN with multi-symbol outputs on 

complex-valued signals is desirable.  

In this paper, we propose and experimentally 

demonstrate a low-complexity NN nonlinear 

equalization in coherent photonics-assisted 

MMW fiber-wireless integrated system. A multi-

task, complex-valued NN is proposed with 

multiple outputs for computation complexity 

reduction. We study the performances of the 

complex-valued NN network with 1, 2, 4, and 8 

outputs in the 100Gbps 16-QAM photonic-

assisted W-band signal after fiber-wireless 

integrated transmission, as well as the required 

training process in each case. The maximum 

decrease of computational complexity reaches to 

78.1% compared with single-output NN. 

Principle 

The comparison of single-task and multi-task NN 

with single-symbol output and multi-symbol 

output is shown in Fig.1, respectively. It can be 

seen that a basic NN structure includes three 

layers, namely an input layer, a hidden layer and 

an output layer. The input layer is related to the 

input symbol sequence. A sliding window 

(determined by the channel memory) controls the 

number of input symbols as the window slides. 

The hidden layer helps improve the performance 

together with a risk of increasing complexity. 

Given that information conveyed by weights in 

the NN corresponding with the current symbol 

may be still useful to the next symbol [8], we can 

apply the NN structure which is used for a single 

symbol equalization to equalize multiple symbols 

so that the computation complexity per symbol 

task can be greatly reduced. 

 
Fig. 1: Single-task and multi-task NN with single-symbol 

output and multi-symbol outputs, respectively. 
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Experimental setup 

Fig.2 shows the experimental setup. On the 

transmitter (Tx) side, offline DSP firstly prepares 

the data to be transmitted in the system. A 16 

QAM symbol signal is generated. After 

resampling and filter shaping, the signals are sent 

into an arbitrary waveform generator (AWG), 

which modulates the optical signal from an 

external cavity laser (ECL) via an I/Q modulator. 

The modulated signal and its unmodulated 

counterpart with 100-GHz frequency-spacing are 

coupled into the optical coupler (OC). After the 

transmission of fibers, the optical signal is 

captured by a photodetector (PD) and converted 

to a W-band signal with center-frequency around 

100 GHz. A sequence of power amplifier (PA) 

and attenuator (ATT) is set to adjust the power of 

the signal. Then it is transmitted by the antenna 

on the Tx side. The corresponding antenna on 

the receiver (Rx) side collects the signal after its 

transmission through the free space of 1 m. A 

local oscillator signal with the frequency of 

100GHz generated by x6 frequency multiplier, 

together with the received signal, are sent into an 

I/Q mixer to down-convert the signal and 

separate the in-phase component and the 

orthogonal component for the digital storage 

oscilloscope (DSO). The signal received by the 

DSO should be processed after a series of offline 

DSP including resampling, chromatic dispersion 

equalization (CDE), least mean square (LMS), 

etc. The digitalized signal is the input symbol 

sequence for complex-valued NN equalization. 

The output symbols of NN are decided according 

to mapping, and finally, the bit error rate (BER) 

can be calculated. 

The further details of the multi-task complex-

valued NN structure are depicted in Fig.3. The 

top layer represents the input symbol sequence 

and the center symbol is the current one to be 

deduced. Due to the nonlinear impairment, the 

past symbols and proceeding ones should also 

be considered. Firstly, every symbol should be 

separated into real and imaginary parts. Then, 

the data in the sliding window are processed for 

equalization. What we get from the output layer is 

the real and imaginary parts of the predicted 

symbol. Converting the 1× 2 vector into the 

complex symbol is the last step in the complete 

NN.  

Our NN model has been trained in Python. 

The number of nodes of the hidden layer is 20. 

The BER decreases when the length of input 

symbols grows, which means that the system has 

a channel memory. The optimal length of the 

sliding window for single-symbol output NN is 19 

according to a series of trials, in which the BER 

doesn’t decrease when the length exceeds 19. 

As for multi-symbol output NN, the length is set 

to 19 + n (the number of outputs) to avoid missing 

the relevant information of multiple symbols. We 

set the number of outputs as 2n for ease of 

processing, which is 2,4, and 8. Hence the length 

of input symbols is 21, 23, and 27 respectively. 

The training epochs are changed to maintain 

the performance of NN with different outputs. The 

batch size is fixed to 256 and there are 32768 

symbols to be processed in total. 70% of them 

are for training while 30% of them are for testing. 

Results and discussion 

Fig.4 shows the performance of NN equalization. 

 
Fig. 3: The detailed structure of complex-valued NN with 

multiple outputs. 

 
Fig. 1: Experimental setup of multi-symbol output NN equalization in coherent photonic-assisted W-band fiber-wireless 

transmission system and the spectrum of the signal before NN equalization. 
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Fig.4(a) shows the relationship between received 

optical power (ROP) and BER. We measure the 

optical power sent to the PD and find that the 

performance gets worse when the optical power 

becomes lower. Without NN equalization, the 

signal BER is all above the 7% forward error 

correction (FEC) threshold of 3.8e-3. The NN with 

one output helps improve the performance when 

ROP reaches 10.2dBm. The NN with 2-symbol 

and 4-symbol output are without exception, 

showing similar performance with the former. The 

BER performance under NN with 8-symbol output 

is slightly worse than the 1/2/4 outputs. (i) and (ii) 

of Fig.4(a) show the constellations of the signal 

after the NN equalization with 2 outputs and 

without the NN equalization respectively. 

Fig.4(b) shows the relationship between Vpp 

and BER, indicating the optimal working point at 

the Vpp of 100mV. Without the NN equalization, 

the performance gets worse when the Vpp is 

either lower or higher. With the NN nonlinear 

equalization, the optimal working point of the Vpp 

increases to 150mV. It can be seen that the BER 

for NN with 1, 2, and 4 outputs are nearly the 

same. Similarly, the performance of NN with 8 

outputs is slightly worse.  

Fig.4(c) shows the relationship between the 

data rate and BER. The BER gets worse when 

the data rate becomes higher and the maximum 

rate for this system can reach less than 90Gbps 

under the threshold of 7% FEC without the NN 

equalization. With single-output NN equalization, 

the rate increases to about 100Gbps and so do 

the NN with 2 outputs and 4 outputs. However, in 

the region of lower data rates, there are obvious 

differences among the three schemes. NN with 8 

outputs can also reach the rate of 100Gbps with 

slightly worse BER. 

Finally, the computational complexities of 

different schemes are shown in Fig.5. In terms of 

the structure of the NN, the complexity is mainly 

decided by the multiplications per symbol of real-

time implementation [8], which involves the 

length of input symbols, the nodes of the hidden 

layer and the number of outputs. We gradually 

increase the epochs to maintain the performance 

when the number of outputs grows. The training 

needs 30/50/100/180 epochs for NN with 1/2/4/8 

outputs. In terms of the process of training NN, 

the computation becomes more complex. But 

once the whole model is trained successfully, the 

following equalization don’t need extra training. 

We have found that the maximum decrease of 

computational complexity could reach 78.1% 

when the NN has 8 outputs under the condition 

of maintaining the similar performance. 

Conclusions 

A low-complexity complex-valued multi-task NN 

nonlinear equalization is proposed and 

experimentally demonstrated for coherent 

photonics-assisted MMW fiber-wireless 

integrated system. We study the performances of 

the complex-valued NN network with 1, 2, 4, and 

8 outputs in the 100Gbps 16-QAM photonic-

assisted W-band signal after fiber-wireless 

integrated transmission. Compared with signals 

without NN equalization, the improved BER 

performances of multi-task NN are confirmed, 

while the maximum decrease of computational 

complexity reaches to 78.1% compared with 

single-task NN. 
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Fig. 4: The performance of NNs. (a) BER v.s. RoP. (i) and (ii) are the constellations after NN with 2 outputs and without NN. 

(b) BER v.s. Vpp. (i) and (ii) are the constellations after NN with 2 outputs at 150mV and 300mV. (c) BER versus data rates. 

 
Fig. 5: The relationship of multiplications per symbol and 

training epochs when the number of outputs changes. 
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