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Abstract

SOA-based O, S, C and L-band OADMs are experimentally verified for providing optical

transparency between metro aggregation nodes and far-edge OLTs. Results with 28 GBd PAM-4 trans-
mission show operation below the FEC-threshold for up to 3 nodes and 24 km of SMF in the C-band.

©2022 The Author(s)

Introduction

Boosted by the heterogeneous traffic generated
by Edge Computing, 5G, loT, massive machine-
to-machine communications and industry 4.0,
metro and access networks requirements in
terms of capacity, flexibility and latency are be-
coming more demanding. Therefore, metro net-
works will need to adapt and provide dynamic and
programmable optical transmission and switching
systems to serve multiple network functions virtu-
alization (NFV) applications such as virtual base
band units (vBBUs), content delivery networks
(CDNs), among others.

A promising approach to adapt do these re-
quirements is by providing an optical continuum
between metro and the access far edge and com-
puting nodes, exploiting the transparency and
programmability offered by the optical add-drop
multiplexers (OADMSs), as shown in Fig. By
providing this optical transparency between dif-
ferent layers of the optical network, several ser-
vices that require a low and deterministic latency
can be allocated further away in remote virtual-
ized DCs, as optical wavelength switching is ca-
pable of providing a deterministic latency between
optical nodes. Also, the costs and power con-
sumption associated with the deployment of these
network nodes can be reduced by eliminating ex-
pensive electronic aggregation switches. How-
ever, as the network grows with more antennas
and very high bandwidth demands (in the next
6G generation, predictions indicate needs rang-
ing from 100 Gb/s to 1 Tb/s per cell), there could
be the situation where the limited optical chan-
nels in the C-band are not sufficient to support the
capacity demand as well as enabling the desired
optical continuum. A possible solution is the use
of the Multi-band (MB) optical low-loss spectra
of single-mode fiber (SMF) fibers, from 1260 nm
to 1625nml@ B to increase the capacity of the
networks and also provide optical transparency
between the metro access networks while mini-

mizing the occurrence of wavelength contention
given the large number of optical channels avail-
able in the MB spectra.

The implementation of such transparent MB
networks, requires advanced MB-OADMs that
are able to transparently bypass, drop or add the
MB channels. Several MB devices suitable for the
OADM composition were proposed and demon-
strated in#H7 | but suffered low extinction ratio
(ER), high insertion losses (ILS) and polarization-
dependent loss (PDL), making extra amplification
stages necessary in the network.

In this work, we present a lossless semicon-
ductor optical amplifier (SOA) based MB-OADM,
operating in the O, S, C and L-bands suitable for
the transparent and programmable metro-access
networks nodes and prone to Photonic Integra-
tion as shown in previously C-band only works!®l,
The operation of the MB-OADM is investigated
in the context of the network depicted in Fig.
for optical paths corresponding to communica-
tions between regional DCs and Metro-DCs, com-
munications between Remote radio-units (RUs)
and Metro-DCs, and communications between re-
mote dedicated business link and Metro-DC, all
without additional in-line erbium-doped fiber am-
plifiers (EDFAs), and supporting all the remote
virtualized network functions and other services
already presented.

Our experimental validation was conducted for
a total of 16 channels (4 in each band), each mod-
ulated by pulse-amplitude modulation (PAM)-4 at
28 GBd and the number of errors was kept be-
low the forward error correction (FEC) threshold
of 3.84 x 1073 for up to three traversed OADMs
and 24 km of SMF.

Multi-band OADM Operation

The schematic of the MB-OADM used in
the metro network experimentn is depicted
in Fig. 2l Tunable lasers sources in the
O, S, C and L-bands are configured for
channels 1295.56 nm, 1300.05nm, 1304.58 nm
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Fig. 1: Metro access networks (MAN) reference architecture with dynamic optical continuum paths between metro core elements
and other layers of the network.
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Fig. 2: Experimental setup for the MB-OADM.

and 1309.14nm in the O-band, 1510.04 nm,
1511.63nm, 1513.22nm and 1514.78 nm in the
S-band, 1555.75nm, 1556.56nm, 1557.36 nm
and 1558.17 nm in the C-band and 1590.32 nm,
1592.00 nm, 1593.68 nm and 1595.28 nm in the
L-band. The channels for the S and L-bands
were chosen based on the operation region of
the wideband SOA as shown in Fig. [3 and for
matching the channels of the available arrayed-
waveguide gratings (AWGs) used as multiplexers
and demultiplexers. The O and C-band channels
were chosen based on the Local-Area-Network
Wavelength Division Multiplexing (LWDM) and
dense wavelength-division multiplexing (DWDM)
grids respectively.  After the lasers, Mach-
Zehnder modulators (MZMs) modulates the con-
tinuous wave signal with 28 GBd 4 level PAM
data streams with a pseudorandom bit sequence
(PRBS) length of 21° — 1.

The first OADM block is located after a SMF
span of 16 km. It consists of a band demultiplexer

and multiplexer used to separate and combine
the input MB signals, the used band demultiplex-
er/multiplexer are comprised of fused fiber WDM
splitters!®. After band separation SOA-based O,
S, C and L-bands OADMSs are used to control
each channel in each band. The SOA-based
OADM consists of a demultiplexer to separate
the single band signals into individual channels,
an array of SOAs that selectively and dynami-
cally blocks or passes each channel, and a mul-
tiplexer for combining the channels. The SOAs
partially compensate the muxes/demuxes losses
as well as the losses in the optical links. The drop
stages are realized by a 3 dB splitter before each
SOA and the add stages are realized in the same
manner after the SOA and before the multiplexing
stages.

——SO0A Gain @ Power = -5 dBm
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C-band channels
L-band channels
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Fig. 3: Gain region for the two types of wideband SOAs

employed in this work.
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Experimental Results

Three scenarios were considered for evaluating
the performance of the proposed solution. The
first one, Path 1, corresponds to communications
between Regional-DC and metro-DC, with one
traversed MB-OADM and 16 km of SMF. The sec-
ond one, Path 2, corresponds to remote-RUC to
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Fig. 4: Fig.[4g O-band BER results. Fig.[4b| S-band BER results. Fig.[4c|C-band BER results. Fig. [4d|L-band BER
results. Fig.@The received signal spectra for the O and S bands. Fig.@The received signal spectra for the C and L-bands.

metro-DC communications, with 2 traversed MB-
OADMs and two spans of SMF of 16km and
6km. The last scenario, Path 3, corresponds to
communications between a dedicated business
link and another metro-DC, with 3 traversed MB-
OADM nodes and SMF spans of 16km, 6km
and 1.6km. These optical paths are highlighted

in Fig. [1]

(c) (d)

Fig. 5: Fig.[5a| Back-to-back Eye Diagram in the
C-band. Fig.[5b| Eye diagram after 1 MB-OADM. Fig.[5d Eye
diagram after 2-MB-OADMs. Fig.Eye diagram after 3
MB-OADMs.

In Fig. [4] the experimental results for the de-
scribed optical paths for all bands are shown.
In Figs. [4al [4b] and [4d] the results for the O, S-
and L-bands, respectively, are shown. In the
three cases successful transmission for up to two
nodes was demonstrated for several channels, all
below the FEC threshold of 3.84 x 10319, |n
the C-band case, Fig. successful transmission
for up to three nodes, which corresponds to Path
3, was successfully accomplished with a power
penalty of around 3 dB when comparing this case
to the back-to-back case. The reason of the in-

creased penalty can be easily verified from the
eye diagrams of Fig. [5|where the noise increases
as we cascade more SOA-based MB-OADMs. In
the same Figs. [4€] and [4f| we highlight the loss
compensation mechanism of the proposed MB-
OADM. In these figures it is shown that the losses
introduced by the passive components in the MB-
OADM structure, as well as the losses introduced
by the fiber spans are compensated by the SOAs
after each path, making the proposed architec-
ture essentially lossless. By correctly mapping
the operation condition of the SOAs, mode ad-
vanced features, such as power equalization, can
also be implemented in the current design.
Conclusions

In this paper we demonstrated a SOA-based
MB-OADM to implement a lossless and fast
optical switching solution for future MB metro-
access networks. Experimental data transmis-
sion showed the scalability of the proposed MB-
OADM, supporting 28 GBd PAM-4 transmission
for up to 3 nodes in the C-band, paving the way
for future metro networks without the expensive
in-line amplification.
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