
A Parallel Structure for Polar Codes with Adaptive Frozen Set

Hamid Ebrahimzad(1), Ali Farsiabi(1), Chuandong Li(1), Zhuhong Zhang(1)

(1) Huawei Technologies Canada Co., Ltd, Ottawa, ON, Canada
hamid.ebrahimzad@huawei.com

Abstract We propose a parallel structure for polar codes which is suitable for parallel/pipelined decod-
ing. Our proposed structure outperforms the regular polar code with same length by 0.2 to 0.4dB and
can achieve the performance of a polar code with a length twice the length of component codes.

Introduction

Polar codes are a class of capacity-achieving lin-
ear block codes with explicit code constructions
and low-complexity encoding and decoding algo-
rithms[1]. The generator matrix of polar codes,
also known as polar transform, leads to the chan-
nel polarization phenomena based on which, at
infinite length, the synthesized bit channels turn
into either completely noisy or noise-free. In prac-
tice, the bit positions (bit channels) can be sorted
according to their reliability. In a polar code with
length N and rate R = K/N , the K most re-
liable bit positions are used to carry information
bits while the remaining N −K bits referred to as
frozen bits are set to some values (typically zero)
that are known to decoder. The recent innova-
tions in algorithm development of low-complexity,
power efficient and high-throughput successive
cancellation-based decoders,[2]–[5], have made
the polar codes competitive to other state-of-the-
art codes. The parallel concatenated codes such
as product codes, thanks to their highly paralleliz-
able decoding algorithms, good error correction
capability and high throughput, are of great in-
terest in optical communication systems. In this
work, we propose a parallel polar structure with
multiple polar codes as its horizontal components.
In this scheme, following a mapping rule, a small
number of bits have an extra level of protection
and are vertically coupled using rate-0.5 repetition
codes. In optical communication, the concate-
nated FEC solutions that are composed of high-
performance soft inner-codes and low-power hard
outer-codes are of practical interests[6],[7]. Our
proposed code can be particularly useful as the
soft inner-code of a concatenated scheme where
the hard outer-code is capable of reducing the er-
ror from 10−4 to less than 10−15.

Proposed Parallel Structure

Let us define the (N,K) polar codes Pi, i =

1, . . . , nr, as the component codes that are ob-
tained by applying the polar transform on different
rows of the nr × N matrix UΠ where Π is a per-
mutation matrix used to reorder the columns of
the matrix U illustrated in Fig. 1.a. All the compo-
nent polar codes follow the same reliability order.
It is assumed the columns of U are sorted accord-
ing to the reliability order of bit-channels such that
the columns on the left and right contain the most
and the least reliable bit positions, respectively.
In fact, the permutation matrix Π will return the
columns of U to their original order. The columns
of U can be partitioned into four column-groups.
The first group on the left, denoted by M, is an
nr × η matrix which is used to carry ηnr indepen-
dent message bits. The entries of M correspond
to the most reliable bit-channels of the compo-
nent codes and is called the private part of U.
In Fig. 1.a, the second and third column-groups
shown with gray color are two nr × γ matrices,
denoted by M̂ and M̃, that carry γnr message
bits shared among different component codes.
The partition related to the matrices M̂ and M̃,
whose bit-channels have medium quality, is re-
ferred to as public part of U. Finally, the fourth
column-group denoted by F is an all-zero matrix
with size nr × (N − η − 2γ) that corresponds to
the frozen bits of component codes, thus, F is
called the frozen part of U. Following the struc-
ture explained above, the row vectors in U can
be written as ui = [mi|m̂i|m̃i|fi] where mi, m̂i,
m̃i and fi are the corresponding ith row in M,
M̂, M̃ and F, respectively. In the encoding step,
the 2γnr bit locations available in the public part
of the code are used to carry, only, γnr informa-
tion bits. To achieve this, γnr message bits are
inserted at different entries of M̂ in the public part
of U. The rows of M̂ are then partitioned into γb
subvectors as m̂i = [m̂i[1], m̂i[2], . . . , m̂i[γb]] for
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Fig. 1: (a) Structure of matrix U (b) An example of bit-mapping within the public part of U (gray area) where nr = 6 and γb = 5.
The number of bits at each block (subvector) is γ/5.

i = 1, . . . , nr. Each subvector mi[k] consists of
γ/γb bits. Subsequently, the corresponding sub-
vectors at each rows of M̃, which is the second
partition in the public part, are determined accord-
ing to the following mapping rule,

m̂i[k] = m̃ mod (k+i−1,nr)+1[k],

i = 1, . . . , nr , k = 1, . . . , γb and γb < nr,
(1)

where m̃i[k] denotes the kth subvector of m̃i and
mod(k + i − 1, nr) represents the remainder of
(k + i − 1) divided by nr. An example of the
mapping rule in (1) is illustrated in Fig. 1.b where
γb = 5 and nr = 6. As can be observed, each of
the subvectors m̂i[k] or m̃i[k] in the public part of
U are repeated within two component polar codes
and, moreover, a component code does not share
more than one subvector with another code. Due
to the decoding algorithm that will be explained
in the following, cyclic redundancy check (CRC)
with length lc is performed on each rows of matrix
U. In this regard, (η− lc)nr bits of information are
equally split between the row vectors mi in M.
Then the remaining lc positions of each vector mi

are allocated to the CRC bits of the corresponding
row in U. It is noted that the CRC bits for each ui

are obtained based on the (η−lc) message bits in
mi and the 2γnr bits jointly stored in m̂i and m̃i.
After the construction of U, the polar transform
is applied on each of the rows in UΠ to yield nr

codewords, with length N , related to component
polar codes . By considering the overheads (OH)
due to public part of U as well as the CRC, the
effective rate of our proposed code can be com-
puted as Reff = η+γ−lc

N .
In our proposed code structure, each row is a

component polar code of length N with N−η−2γ

frozen bits initially known to decoder. Decoding a
received noisy block can be performed in an it-
erative fashion where each iteration consists of
a horizontal and a vertical step. In the horizon-
tal step, the CRC-aided successive cancellation

list (SCL) decoding algorithm,[8],[9], with the list
size of L, is utilized and all the component po-
lar codes are decoded in parallel. Subsequently,
in the vertical step, the decoding of the rows with
valid CRCs are declared as successful. The pub-
lic bits of the successful rows can be appended
to the list of frozen bits in other rows whose de-
coding have been failed. This can enhance the
chance of successful decoding of the failed rows
by reducing their effective rates at the next itera-
tion. It should be noticed that, at each iteration,
only the failed rows of the previous vertical step
are redecoded.

Simulation Results
In our simulations, we use fixed-point SC and SCL
decoders with 5 bits for quantization. To do so, the
channel inputs are, first, saturated with the clip-
ping threshold of 4 and, then, mapped to the in-
teger numbers within the interval [−15, 15]. In the
following, we use the notations PSC and PSCL to
refer to our proposed code where the component
codes are decoded by SC and SCL decoders,
respectively. In Fig. 2, bit error rate (BER) re-
sults of our proposed structure decoded by SC
and SCL algorithms with Imax = 2, 4 are pre-
sented. The code parameters are considered as
N = 1024, nr = 40, γ = 12, γb = 2, η = 814

and lc = 11. Therefore, the effective rate of the
code is Reff = 0.8. In the same figure, along
with the BER results of our proposed code, the
simulation results of two regular polar codes with
rates 0.8 and lengths N = 1024 and N = 2048 are
also presented. As can be seen, in all the cases,
our proposed scheme with 2 and 4 iterations out-
performs the regular polar code with N = 1024.
The improvement, at BER equal to 10−4, is be-
tween 0.2 to 0.4dB. It is noted that the BER of
10−4 is typically considered as the threshold of
the outer-code where a hard FEC can be used to
reduce the error to less than 10−15. As we ex-
pected, increasing the list size from 0 (i.e. SC
decoder) to 8 in SCL algorithm improves the error
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Fig. 2: Bit error rate results showing the performance of the
proposed parallel polar code in comparison with the regular

polar codes decoded by SC and SCL algorithms.

rate performance of all the codes. However, our
code benefits more from the list decoding as the
improvement in the error rate is much more than
the regular polar code. It can also be observed
that, regarding the SC decoding, the error curve
of our proposed code with N = 1024 and Imax = 2

is matched with the curve of BER related to the
regular polar code with N = 2048. We have ob-
served that when Imax = 2, for the majority of
channel realizations, the received blocks can be
decoded within the first iteration. In addition, we
observed that if the number of component codes
going to the 2nd iteration be limited to 0.2nr, there
will not be any performance loss. This implies
that if the dedicated hardware of the 2nd itera-
tion be limited to 20% of the component codes,
the proposed code with N = 1024 have similar
latency but lower complexity than the regular po-
lar code with N = 2048. Our analysis, based on
the approximate formula provided in[3] for unrolled
decoders (which are suitable for high-throughput
applications), shows that the memory area of our
proposed code is about 40% less than the regu-
lar polar code. Regarding the average complexity,
we have observed that when the operating SNR
is 1dB above the hard-FEC threshold, which is a
typical scenario in optical systems, the average
number of iterations approaches to 1 leading to a
low-power consumption.

Conclusions
We introduced a parallel structure for polar codes
that enables parallel/pipelined decoding. We
showed that, in terms of bit error rate, our code
can outperform the regular polar code by 0.2 to
0.4dB. Also, our proposed code structure with
N = 1024 can achieve the performance of a reg-

ular polar code with length 2048. This is while the
decoder of our proposed code has lower average-
complexity and requires about 40% less memory
area than the regular polar code with N = 2048.
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