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D. Argüello Ron , K. Nurlybayeva, M. Kamalian-Kopae , A. A. Ali, E. Turitsyna , S. Turitsyn

Aston Institute of Photonic Technologies, d.arguelloron@aston.ac.uk

Abstract We develop a low complexity complex-valued neural network to compensate the nonlinearity
from the transmission of PDM 28 Gbaud 64QAM over 400km of SSMF, by combining midlink optical
phase conjugation and pruning.

Introduction
In recent years, machine learning has gained at-
traction as a promising technique for mitigating fi-
bre nonlinearities in optical communication sys-
tems[1],[2]. The use of neural networks (NN) in
particular allows for the enhancement of existing
fibre-optic systems without any prior knowledge
of their characteristics. Despite its outstanding
performance, the computational cost inflicted by
such equalisers is high when compared to exist-
ing approaches such as digital backpropagation
(DBP)[3],[4]. Therefore, it is imperative to reduce
the computational complexity (CC) of the neural-
network equalisers, while maintaining adequate
performance. In order to achieve this, we have
previously suggested a neural network equaliser
combined with optical solutions, such as Optical
Phase Conjugation (OPC)[5]. We showed that
combining two nonlinearity mitigation techniques
improves the system performance, and argued
that because OPC decreases the effective chan-
nel memory, it decreases the processing delay
and has the potential to reduce the CC of the ob-
tained NN equaliser[5]. In this paper, we go one
step further and demonstrate that the required
CC of an NN-based equaliser is indeed signifi-
cantly lower when optical solutions such as OPC
are implemented. We employ the NN compres-
sion technique known as pruning[6] to decrease
the CC of the NN, and show that pruning is more
successful when OPC is in place. This means
that optical solutions like OPC (and maybe disper-
sion managed links) can help to simplify the NN-
based equaliser’s architecture. Furthermore, we
demonstrate that the combination of the two tech-
niques outperforms each technique on its own.
The performance of OPC-aided optical communi-
cation is limited by a few factors of the system and
is shown to deteriorate as the asymmetry of the
link increases[7]. While there are techniques to
alleviate the impact of this asymmetry (see[8] for
example), we propose to use NN at the receiver to

mitigate them. However, this NN equaliser needs
to have acceptable CC.

In this work, we make use of complex-valued
NNs (CVNNs) that are more effective in capturing
the sequential relations between complex sam-
ples as the real and imaginary parts of complex-
valued numbers are not separated. Our method-
ology is as the following: using experimental data
from two systems with and without OPC, we use
Bayesian optimisation algorithm (BO) to find the
best NN architecture at each launch power and
number of taps[5]. The resulting optimum config-
urations can be potentially different and smaller
for the case with OPC. The possible reason for
that is the simpler interconnection and underly-
ing nonlinear relation between time samples of
the signal due to the presence of the OPC. The
evolution of signal in the fibre can be captured by
a smaller NN as fewer features are required to ex-
plain it. This phenomenon is well known in the lit-
erature, particularly for inline dispersion-managed
communication links[9]. However, machine learn-
ing solutions tend to be over-parameterized, i. e.
the resulting NN may be unnecessarily large[6].
The technique known as pruning address this by
removing weights (or nodes) with small contribu-
tion (i.e small magnitude or connectivity) at small
or no cost to the overall accuracy[6]. After prun-
ing the NN obtained using BO we show that the
one with OPC has a greater potential to be pruned
compared to the one without OPC.

Experimental Setup
Figure 2 depicts the experimental setup. A polari-
sation division multiplexing (PDM) transmission at
28GBaud using 64 QAM signal has been consid-
ered through the 4 spans of SSMF fibre SSMF
(α = 0.2 dB/km, D = 17 ps/nm/km, γ = 1.3

/W/km), and Mid-link OPC. In the case of the use
of OPC, in the middle of the link, the signal was
amplified by an EDFA with fixed output power (15
dBm), and its conjugate was transmitted in the
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Fig. 1: Block diagram of the experimental setup

second half of the link. Otherwise, to simulate the
insertion penalty of the OPC, a variable optical at-
tenuator with a WSS was used, with the OSNR
set to be the same in the second half of the con-
nection for both situations (with and without the
OPC). The coherent receiver is comprised of a
local oscillator with a linewidth of 100 kHz, whose
signal was mixed with the received signal in a 90◦

optical hybrid. Four balanced photodiodes were
linked to the hybrid outputs, and an analogue-to-
digital converter was used in the form of a real-
time sampling scope (100 GS/s sampling rate, 33
GHz 3-dB bandwidth). On a desktop computer,
offline data-assisted digital signal processing was
performed, and machine learning was applied be-
fore symbol de-mapping. More about this setup
can be found in[5].

Machine Learning-based Equalisation
The CVNN’s configuration was inferred employing
the BO algorithm for all combinations of launched
power and input vector sizes. The values opti-
mised were the number of neurons, number of
layers, dropout rate and the L2 regularisation
penalty These last two parameters have been
used to limit the risk of over-fitting. The number of
neurons tested was n ∈ [50, 600], meanwhile that
the possible values for the number of layers were
l ∈ [2, 6]. The dropout rate was chosen between
p ∈ [0, 0.5] and the regularisation penalty between
L2 ∈ [10−4, 10−1]. To investigate the memory re-
duction impact of the OPC, the input layer con-
sists of a sequence of successive samples from
the two polarisations with varying sizes. For the
activation function, except for the final layer, we
used the Cartesian Rectified Linear Unit(relu) de-
scribed as in[10] (it applies relu to both real and
imaginary parts), while for the final layer we use
the linear activation function. For the training, we
employed 218 complex-valued samples from both
polarisations and the corresponding target broad-
cast QAM symbols. The training, validation, and
test sets each account for 80, 10, and 10 per
cent of the total dataset, respectively. The num-
bers of epochs and the batch size are set to 300
and 2000, respectively. Following initialisation by
He uniform[11], weights are learnt from propagat-
ing data using Adam optimiser with the learning

rate of 0.001, which minimises the complex val-
ued mean-squared error loss (MSE).

Pruning
As it was mentioned above, when designing a NN
there is a trend toward using over-parameterized
architectures, in order to guarantee good model
performance and especially due to the benefits in
the learning capabilities of the model[6],[12]. This
last point is a consequence of the effect that
a larger number of parameters has on the loss
function, as it helps to make it smoother. Thus,
it is easier for gradient descent techniques to
converge[6]. Nevertheless, the parameter redun-
dancy consequences of over-parameterization
comes at the cost of larger computational and
memory resources requirements[13],[14]. There-
fore, noticeable efforts are being done in devel-
oping techniques that can help to simplify the
NNs without drastically damaging their perfor-
mance[13]–[15]. One of them is the already men-
tioned technique known as pruning, which re-
moves redundant NN elements, reducing its size
and computational complexity[6],[15],[16]. There are
several types of pruning, depending on the ele-
ment to be pruned and when this process takes
place[6]. We apply pruning to the weights of the
model, based on their magnitude. Thus, the
smaller weights which contain less information
are removed first, until a desired sparsity level
(e.g. % of pruned weights) is reached. Here, the
magnitude of the weights is defined as the norm
of the complex value. One of the novelties of this
work is the application of this technique to the
general case of Deep CVNN in the context of op-
tical channel equalisation. Although some efforts
have been done to compress CVNN, they tar-
geted other structural elements, techniques and
applications[17] or very specific architectures[18].

Results
In this work, the CVNN were developed employ-
ing TensorFlow and based on a library[19], mean-
while that the pruning process was implemented
using the TensorFlow Model Optimisation Toolkit
– Pruning API. It is worth noticing that these
frameworks are not ready to work with CVNN and
therefore a custom implementation was carried
out based on the code already available. The
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Tab. 1: Optimised CVNN architectures

Optical Solutions Optimal Parameters Power
OPC n = [519, 505, 531, 151, 562, 140], l = 6, p = 0.1, L2 = 6.5 · 10−6 8 dBm
No OPC n = [366, 422, 600, 600, 242, 327], l = 6, p = 0, L2 = 1 · 10−6 8 dBm
OPC n = [430, 532, 406, 462, 315], l = 5, p = 0.35, L2 = 6.5 · 10−3 9 dBm
No OPC n = [600, 600, 600, 600, 568, 50], l = 6, p = 0.1, L2 = 0.1 9 dBm
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Fig. 2: BER achieved for different CC values for 2 datasets
where optical solutions -OPC- are used and 2 where not. 2

launch powers are considered : 8 dBm and 9 dBm

optimal configuration values for the CVNNs pro-
duced by the BO can be found in Table 1. From
these results, it can be concluded that regarding
the architecture, using OPC permits to have less
dense layers and even a lower number of them.
As it was mentioned above, in addition to perfor-
mance, the CC is another largely relevant metric
for the deployment of equalisers developed using
NNs in real optical communication systems. In
this work, it is defined as the number of complex-
valued multiplications[3],[20]:

CC=(1−s) · (nsnin1+

L−1∑
l=1

nlnl+1+nonL) (1)

where s is the level of sparsity achieved by prun-
ing the NN, ns is the memory size (e.g 2N + 1,
being N the number of taps), ni is the number
of input features (e.g 4 as the real and imaginary
parts of two polarisation components are used),
no is the number of outputs (e.g 2, as the real
and imaginary parts of each symbol are recov-
ered) and nl corresponds to the number of neu-
rons in each layer with l ∈ [1, L] and can be found
for the different architectures in Table 1. In Fig. 2
it is possible to appreciate the performance vs the
complexity trade-off achieved thanks to pruning
and taking into account the use or not of OPC
for 8 dBm and 9 dBm launch powers, and 9 taps.
Thus, in the y-axis, the value of the performance,
defined as BER, is represented. The x-axis con-
tains the CC values, calculated following Eq. (1),

for the different NN architectures described in Ta-
ble 1 before and after having been pruned to dif-
ferent degrees. In this case, the sparsity level s
ranged from 20 % to 90 %, with a 10 % incre-
ment, for the pruned models. s = 0 % corre-
sponds to the original models, previous to prun-
ing. This way we demonstrate that using OPC not
only helps to have simpler NNs previous to prun-
ing, but it also allows to reach larger pruning lev-
els without reaching the HD-FEC threshold (e.g.
BER = 3.8 · 10−3). In fact, for a launch power of
8 dBm, it is possible to prune up to 60 % of the
weights and still be below the HD-FEC threshold.
For a power of 9 dBm, sparsity levels up to 40%

can be achieved and still stay below the threshold
of interest. When OPC is not used, the optimised
CVNN is not able to be lower than the HD-FEC
threshold for any CC value for a launch power of
8 dBm. Meanwhile, for 9 dBm, only the perfor-
mance of the original model is clearly below the
threshold and those pruned up to s = 60 % are
slightly above or below it. This demonstrates the
powerful impact of OPC on simplifying the archi-
tecture of the NN-based equalisers. OPC not only
improves the performance of the optical commu-
nication system (see[5]) but it also helps the prun-
ing technique when trying to reduce the CC of the
equaliser.

Conclusion
We have implemented an optimised CVNN-based
equaliser using BO. Moreover, we have demon-
strated that it is able to reduce nonlinear impair-
ments for a PDM 28 Gbaud OPC-aided fibre-optic
communication in a 400 km transmission. Fur-
thermore, we showed evidence that OPC helps
to reduce the effective channel memory allow-
ing to use smaller and less complex CVNN-based
equaliser. Finally, we implement the compression
technique known as pruning for the case of CVNN
and show that better performance vs complexity
ratios can be achieved if combined with OPC.
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