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Abstract We demonstrate neuromorphic silicon photonic computing that supports fast input/weight 

update rates together with dynamic precision capabilities, validating experimentally the classification of 

the IRIS dataset within a two-layer NN with compute speeds up to 50 GHz.

Introduction 

As Moore’s law slows down [1], Optical Neural 

Networks (ONNs) appear as a promising 

candidate to effectively sustain the tremendous 

compute growth that current applications 

demand, due to their high-bandwidth and low-

power consumption credentials [2]. Yet, 

migration to analog optical computing is facing 

two major challenges towards meeting the 

performance levels of current digital NN engines: 

(i) the execution of large NNs with tens of neural 

layers, which can hardly fit entirely into any 

hardware platform, together with (ii) the limited 

bit-precision of analog optical computing 

engines.   

In particular, upgrading ONNs into a general-

purpose AI processing platform has to proceed 

along the paradigm of today’s TPU and GPU 

computational settings, where a limited amount of 

hardware resources can execute deep NNs with 

significantly higher dimensions. This can be 

accomplished only by splitting matrices in smaller 

tiles and performing tiled matrix multiplication via 

time division multiplexing (TDM) [3], 

necessitating the use of neuromorphic photonic 

solutions that support not only fast input but also 

fast weight update rates. However, the majority 

of research in the neuromorphic photonics field 

has emphasized on NN implementations that 

support solely static weighting schemes, 

investing in photonic weight technologies with 

slow reconfiguration times. 

  At the same time, the limited bit precision of the 

constituent high-speed/high bandwidth photonic 

building blocks [4], bears, inevitably, significant 

accuracy degradation during the inference 

process. To this end, in pre-trained networks, 

analog optical computing can offer tangible 

benefits over its electronic counterparts, only 

when operations can be executed at low bit 

precision [5]. As of today, researchers have made 

intensive efforts towards mitigating these noise-

related challenges. The authors in [6]-[8], 

proposed a method to tackle the noise induced 

by the analog photonic hardware via noise-aware 

pre-trained networks, incorporating various noise 

sources in the training process. Yet, even though 

these techniques lead to accuracy 

improvements, they impose additional complexity 

and energy trade-offs since the NN need to be 

retrained in order to be tailored to the employed 

hardware constraints. 

In this paper, we present a neuromorphic 

photonic processor capable to perform tiled 

matrix multiplication through TDM and dynamic 

precision noise-aware inference via the effective 

reconfiguration of the data rate among the NN’s 

layers. The proposed methods were 

experimentally applied on the classification of the 

IRIS dataset [9] via an integrated SiPho chip, 

executing a total number of 70 MACs over a 

2-MAC-supporting neuron and revealing the 

classification accuracy dependence on the 

employed data rate. Specifically, the noise 

analysis of the NN unveiled high noise tolerance 

on its first layer and a noise sensitive output layer. 

This study was experimentally validated by 

carrying out the inference of the constituent 

neural layers via TDM and recording the 

accuracy of the NN when the linear operations of 

the two layers were performed at 2, 16 and 

50 Gbaud. The software accuracy of 96.6% was 

achieved at the experimental inference of the first 

layer irrespective of the employed compute rate 

and 93.3%, 86.8% and 68.8% accuracies were 

obtained when the second layer was 

implemented at 2, 16 and 50 Gbaud, respectively. 

Noise-aware NN inference using TDM  

In view of the classification of the IRIS dataset we 

designed and trained the NN illustrated in 

Fig. 1 (a). Specifically, the 4 features of the IRIS 

flowers comprise the inputs of the 4:10:3 fully 

connected NN. The training was performed 

employing float-32 single precision variables, 

achieving a classification accuracy of 96.6%. To 
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quantify the classification accuracy and bit-

resolution dependence of each neural layer 

during inference, we investigate their noise 

equivalent quantization bit (NEQB) requirements 

individually [10]. Specifically, we quantize the NN 

parameters of the examined layer with 1-8 bits. 

As Fig. 1(b) reveals, approximately a NEQB of 2 

is required to achieve the maximum accuracy at 

the 1st layer, while the respective bit requirements 

for the 2nd layer was measured to be equal to 

~5 bits. This analysis comprises the key for the 

effective selection of the inference conditions per 

layer i.e., compute rate and bit precision, leading 

to an efficient post-training, noise-aware and 

dynamic-rate NN inference. 

On top of the above, since the deployed ONN 

hardware size cannot follow the NN dimensions, 

the inference of the NN should be effectively 

unfolded in time [11]. Figure 2(a) illustrates a 

microscope photo of the fabricated SiPho 

processor, that employs electro-absorption 

modulators (EAMs) for encoding the NN 

parameters and corresponds to a 2:1 neuron [12]. 

Hence, the fabricated 2:1 neuron needs to be 

effectively reused to execute the linear 

operations of the NN trained for the IRIS dataset 

(4:10:3). Figure 2 (b) depicts an indicative 

example of the intra-neuron TDM employed for 

the compound of 4 inputs x1-x4 and their 

respective weights w1-w4, decomposed into 2 

sequences xa,xb and wa,wb, respectively, in order 

for a 4-input neuron of Layer #1 to fit into the 2:1 

photonic neuron [11]. Figure 2(c) illustrates the 

TDM of the four inputs x1-x4, along with their 

respective weights, w1-w4, into the xa, xb and wa, 

wb data sequences. More specifically, the 

multiplexed input data, xa and xb are formed as 

x1,1x3,1x1,2,x3,2...x1,Nx3,N and x2,1x4,1x2,2,x4,2...x2,Nx4,N 

respectively, where xi,j refers to the jth sample (𝑗 ∈
[1,150])  of the ith (𝑖 ∈ [1,4]) neuron input and its 

sample number. Their respective weights wa, wb 

were formulated accordingly. Finally, intra-layer 

TDM was applied towards the implementation of 

the linear operations of the whole neural layer 

and subsequently of the entire NN. 

Experimental setup and results 

Towards the execution of the inference of the 

IRIS dataset, we established the experimental 

testbed depicted in Fig. 3. Specifically, a 10 mW 

continuous wave signal was generated at 

1560 nm and injected to the SiPho processor. 

The signal was then split via a 3 dB splitter into 

the two identical arms of a Mach-Zehnder 

Interferometer, that are composed of two EAMs 

and a thermo-optic heater each [12]. The first 

were employed for the encoding of the NN input 

and weight parameters, while the latter 

safeguards the constructive interference of the 

weighted inputs [13], since both the inputs and 

the weights of the NN were forced to be positive 

during the NN training. A 38 GHz arbitrary 

waveform generator (AWG) and a DC control 

plane were employed for the digital to analog 

conversion of the RF and the DC signals, 

respectively. The positive linear summation of the 

weighted inputs was coupled out of the SiPho 

chip, captured by a 70 GHz photodiode and 

digitized via a 66 GHz real time oscilloscope. 

Finally, an NN-library was established to 

orchestrate the whole inference procedure. More 

specifically, a series of digital signal processing 

steps were applied in the transmitter site, that 

comprised the decoupling and multiplexing of the 

NN parameters, the compensation of the 

non-linearities of the electronic-photonic link, the 

resampling, the pulse shaping and the 

quantization of the signals before being uploaded 

to the AWG. Thereafter, in the receiver site, the 

digitized signals were time recovered, filtered, 

demultiplexed and downsampled. Finally, the 

activation functions and the calculation of the NN 

accuracy were performed in software. 

In order to benchmark the noise profile of the 

ONN in different compute rates, we 

experimentally characterized the noise standard 

deviation of the electro-photonic link and 

correlated it with the achievable NEQB, as 

 
Fig. 2: (a) Microscope photo of the integrated silicon 
photonic 2-input neuron. The elementary computational cells 
are encapsulated within the white rectangles.  
(b)  Implementation of a 4–input neuron through a 2:1 neuron 
(c) Intra-neuron time division multiplexing of both the NN 
inputs and weight parameters. 

 
Fig. 1: (a) 4:10:3 fully-connected NN for the classification of 
the IRIS dataset. (b) Inference quantization bits 
requirements per neural layer. 
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illustrated in Fig. 4(a). Thereafter, following the 

TDM and noise aware inference methods 

described in the previous sections, we classified 

150 samples of the IRIS dataset. Specifically, we 

assessed the experimental achieved accuracy of 

each of the two neural layers separately and 

benchmarked it versus their requirements in 

quantization bits during inference, calculated via 

the per-layer NEQB analysis. As such, the 

execution of the first neural layer at a rate as high 

as 50 Gbaud without degrading the classification 

accuracy performance was validated, while the 

output layer proved to be less tolerant to the 

quantization noise. This is, also, revealed in 

Fig. 4(b)-(d), where the first 50 samples of output 

neuron #1 are presented, when the inference of 

the output layer was performed at 2, 16 and 

50 Gbaud, respectively. As expected, the 

divergence of the experimentally derived curves 

(blue) from their respective reference (orange) 

becomes more pronounced as the compute rate 

increases. In order to quantify this divergence, we 

plot its probability density function at different 

operating compute rates, shown in Fig. 4(e), 

revealing a standard deviation of 0.049, 0.09 and 

0.218 for the data rates of 2, 16 and 50 Gbaud, 

respectively. Hence, depending on the targeted 

classification accuracy, we enable the selection 

of the corresponding compute rate for the 

execution of the output layer. More specifically, 

Fig. 4(f) depicts the NEQB per layer versus the 

classification accuracy, with the dashed and solid 

lines corresponding to the simulated derived 

curves from the noise aware inference method for 

the 1st and 2nd layer, respectively. The scatter 

points represent the experimentally obtained 

accuracy for the operating compute rates that 

closely match the simulated accuracy with 

respect to the NEQB derived from the 

experimentally calculated noise standard 

deviation of the operating rates, as shown in 

Fig. 4(a). Finally, Fig. 4(g) illustrates the 

experimentally obtained classification accuracies 

at 2, 16 and 50 Gbaud compute rates, compared 

with the accuracy derived by the software. The 

results reveal that the accuracy degradation 

emerges at the final layer, as has been also 

identified previously, and becomes even more 

pronounced as the compute rate increases, with 

2G operation yielding 93.3%, 16G 86.6% and 

50G 68.8%. 
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Fig. 4: (a) Opto-electronic link noise variance versus NEQB. Indicative trace of the first 50 samples of the upper output neuron 

computed at 50 Gbaud at the first layer and (b) at 2, (c) 16 and (d) 50 Gbaud at the second. The software and the experimentally 

received signals correspond to the orange and the blue curves, respectively. (e) Probability density function of the experimentally 

obtained traces of the second layer at 2, 16 and 50 Gbaud. (f) NEQB versus the achievable NN accuracy, when the first (dashed 

line) or the second (solid line) layer’s data is quantized with [1,8] bits. (g) Experimentally acquired classification accuracy per 

neural layer at 2, 16 and 50 Gbaud. 

 

 
Fig. 3: Experimental testbed for the evaluation of the silicon 

integrated 2-input neuron. 
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