
Adapting Routing Algorithms to Programmable Photonic Circuits

Ferre Vanden Kerchove(1), Xiangfeng Chen(2), Didier Colle(1), Wim Bogaerts(2), Mario Pickavet(1)

(1) IDLab, Department of Information Technology, Ghent University - IMEC
ferre.vandenkerchove@ugent.be
(2) Ghent University - IMEC, Photonic Research Group, Department of Information Technology, Gent,
Belgium. Center of Nano and Biophotonics, Ghent University, Belgium

Abstract The ever-increasing size of programmable photonic integrated circuits necessitates the de-
velopment of specialised routing algorithms, capable of handling different mesh architectures and mag-
nitudes. We develop an algorithm specifically adapted to the unique characteristics of programmable
photonic circuits. ©2022 The Author(s)

Introduction

Photonic Integrated Circuits (PIC) are the op-
tical equivalent of electronic integrated circuits.
Just like their electronical counterparts, PICs are
small, energy-efficient and can pack many func-
tions in a single chip. Currently, they are mostly
application specific, meaning that they are de-
signed with only one purpose in mind, and the
light paths are primarily fixed during chip design.
In turn, this leads to long design times and high
development costs, possibly slowing down the ex-
ploration of novel optical applications[1]. This is
where Field-Programmable Photonic Gate Arrays
(FPPGAs) come into play. They are made of hun-
dreds of electrically tunable optical couplers, en-
abling a dynamic control over the course of light.
These couplers are systematically arranged in a
mesh, as can be seen in Fig. 1. Popular archi-
tectures are forward-only meshes, or feedback
meshes. This paper focusses on the latter, where
light flows in waveguides organized in loops of
triangles, squares or hexagonals[2]. Feedback
meshes allow light to fold back onto itself, en-
abling the embedding of a broad class of optical
functions, such as interferometers and ring res-
onators. This reduces the need of dedicated func-
tion blocks in FPPGAs.

Right now, the control algorithms to operate
these meshes are largely in their infancy. They
either take forward-only meshes in mind, or focus
on small recirculating meshes. The difficulty of
correctly modelling all limitations of light proved to
be a real hurdle. However, recent developments[3]

have shown an interesting graph representation
of couplers, enabling an almost complete sepa-
ration of the algorithm from the many constraints
that are physically imposed. This greatly simpli-
fies algorithm design and permits an easier un-
derstanding of the methods involved.

Fig. 1: Waveguides (WG) and phase shifters (PS) organized
in hexagonal cells and connected through couplers (CP)

This paper aims to extent the work of[3],[4],[5]

focussing on meshes that are an order of mag-
nitude larger. While the aforementioned papers
look at meshes consisting of 7 to 20 hexago-
nals cells, in this paper meshes with hundreds
of hexagonal cells are taken into account. We
propose several modifications to adapt an algo-
rithm to the characteristics of programmable pho-
tonic circuits. The solutions of the resulting algo-
rithm are compared on smaller problem instances
where it stays within 2% of the optimal result, with
a twentyfold speed up in comparison to the exact
solution.

Problem statement
A commodity is a source-target pair, where light
needs to flow from the source, to the target. The
main problem of this paper is the following: given
a mesh consisting of waveguides and couplers,
and a set of commodities, find a way to connect
each source with its target through a path in the
mesh. A light wave can only change waveguide
by means of a coupler. Such a coupler can let
light continue in their waveguide, or cross over to
the other waveguide. This is called respectively

We5.19 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



Algorithm 1

Require: commodities coms and a graph G
1: i← sol← 0
2: best← ∅
3: paths ← PREPROCESSING(G, coms)
4: while i < itermax and sol < solmax do
5: for com ∈ coms do
6: if paths[com] has conflict then
7: paths[com] ← DIJKSTRA(G, com)

8: if NO CONFLICTS(paths) then
9: best ← CHOOSE BEST(paths, best)

10: sol← sol + 1
11: RESET CONGESTION(G)
12: LENGTH BASED RIP UP(G, paths)
13: else
14: UPDATE WEIGHTS(G, paths)
15: if DETECT LOOP(paths, i) then
16: SEQUENTIAL ROUTING(G, com)
17: i← i+ 1

bar mode and cross mode. Each path needs to
adhere to the following constraints: light cannot
make a u-turn in a coupler, nor can a coupler be
in bar and cross mode at the same time. Addi-
tionally, two paths cannot make use of the same
waveguides.

Given the earlier mentioned novel graph repre-
sentation, we can easily model different meshes
as graphs. Important to notice is the fact that ev-
ery waveguide and coupler arm is modelled by
two edges, each in one direction. For every edge,
we have a reverse edge, the edge representing
the same waveguide but going in the other direc-
tion. The problem now translates to the follow-
ing. Given a directed graph G = (V,E) and a set
of sources-targets pairs (s1, t1), . . . , (sn, tn), find
a set of paths P1, . . . , Pn such that Pi is a path
from si to ti and no edge is congested. An edge
e is considered congested in the following situa-
tions.

• Two different paths use e

• A path uses e, another its reverse edge
• A path uses both e and its reverse edge

If a path contains a congested edge, this path
is said to have a conflict. This definition of con-
gested is broader than normally considered, but
a necessary adaptation. A set of paths is a le-
gal routing and thus a solution if every source is
connected with its target by a conflict-free path.

Algorithm description
We propose a negotiation-based algorithm sim-
ilar to[6], given the fact that modern FPGA de-
sign tools routing algorithms[7] are also built on

this idea. We propose several changes, some
to incorporate the physical constraints, others to
improve performance. Throughout the text, we
will call this algorithm Algorithm 1. Different from
the original algorithm is the fact that we give
weight to the edges instead of to the nodes, to
allow for more accurate modelling of intrinsic dif-
ferences in the waveguides, such as insertion
loss (IL), power consumption (P ) and basic unit
length (BUL). Every edge e has a base weight
be which is a combination of these three proper-
ties, where c1, c2, c3 are the scaling coefficients;
be = c1 · ILe + c2 · BULe + c3 · Pe. For simplicity’s
sake, we will only focus on BUL, and assume that
all edges have length exactly 1. Thus, the base
weight of every edge is 1.

The adjusted weight ce of an edge e in a path
is given by

ce = (be + he) · pe.

Here be is the base weight of an edge as given be-
fore, he keeps track of how many times that edge
was congested. pe is equal to the amount of other
paths that use this edge, plus one. Notice that
the weight of an edge can be different, depend-
ing on the path. When a least weighted path is
calculated by DIJKSTRA[8], it uses these weights.
When we refer to the length of a path, we refer to
the number of edges in that path.

As seen in Algorithm 1, the main loop of the
algorithm is fairly similar to Pathfinder[6]. PRE-
PROCESSING will be explained later. The algo-
rithm runs until either a set amount (itermax) of it-
erations has passed, or a fixed amount (solsmax)
of legal routings have been found. Every itera-
tion, for every commodity, its corresponding path
is ripped-up and rerouted if it has conflicts. The
routing happens ‘simultaneously’, i.e., the routing
of a commodity does not depend on what else
happened that iteration, only on the weight of that
edge, which is only calculated based on the pre-
vious iteration.

If no path has any conflicts, the solution is
recorded if the sum of the path lengths is shorter
than the best solution so far. The factor he

that keeps track of the congestion is reset on all
edges. We want to promote shorter overall path
length but keep the good parts of the previously
found solution. This is why we only rip-up the
paths that are 10% longer than their shortest pos-
sible path and then restart again.

If there are still conflicts, every congested edge
has its he term increased by a fixed amount,

We5.19 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



called the history increase. We change the his-
tory increase every time a solution is found, or
when no solution can be found with a particular
history increase.

Preprocessing
Right now, the mesh architectures under investi-
gation often have many equal shortest paths be-
tween two vertices. PREPROCESSING makes use
of this property, by calculating all the shortest
paths between a sink and its corresponding tar-
get. If two shortest paths between two different
source-target pairs both use the same edge, the
base cost of that edge is slightly increased by ε,
here taken equal to 1% of the base weight. Now,
the first round of routing happens. For every com-
modity, the weighted shortest path is calculated.
If a commodity has different shortest paths, it will
prefer the shortest path that has no edges shared
with a shortest path of another commodity. This
reduces the amount of early conflicts but has di-
minishing effects when the mesh is densely used.

Loop detection
One more problem remains that is not mentioned
in context of FPGA routing algorithms. The al-
gorithm gets stuck in a loop, where it keeps sug-
gesting routing R1, then R2 and it cycles between
these two. This wastes a lot of iteration, and
sometimes the algorithm does not even manage
to escape from this loop. In one test a cycle of
4 configurations, involving 3 different paths was
found. To combat this issue, loop detection is
done. If after a set amount of iterations, the same
n ≤ 5 paths still have conflicts and no other paths
have, then a round of sequential routing is con-
ducted. This means that after a commodity is
routed, weights are immediately updated. Specif-
ically, 10 random sequences are chosen and the
shortest conflict-free sequence is chosen, or the
sequence with the least amount of conflicts.

Test set generation
A test set consists of a radius and a list of source-
target pairs. The mesh is a radial mesh like in Fig.
1. A mesh of radius n has 1 + 3n(n + 1) hexag-
onal cells1. The source and targets are randomly
placed throughout the outer layers of the mesh.

Results
Fig. 2 plots computational time in comparison to
problem size which is the amount of commodities

1One single hexagonal is considered a mesh of radius 0.

Fig. 2: Time needed for an Integer Program and for
Algorithm 1

Fig. 3: Total length in comparison to shortest routing

that are routed in a graph of radius 8. As ex-
pected, the time needed for an Integer Program
to find the optimal solution behaves exponentially
in terms of the problem size. For larger graphs,
we can no longer find optimal solutions in reason-
able time.

To gauge the quality of the solutions of Algo-
rithm 1, we express in percentages how much
longer the solution is in comparison to the optimal
solution. Fig. 3 shows that on smaller instances
the optimal solution is found, while on larger in-
stances the solutions are between 0.5% and 2%
longer than the optimum. This is a general trend
for all instances still optimally solvable.

Conclusions
We have demonstrated a good routing algorithm
specifically adapted to the unique topology of
photonic integrated circuits, but independent of
exact mesh architecture. Our algorithm produces
close-to-optimal results in reasonable time. Fu-
ture work can consider the embedding of optical
functions such as interferometers. This will re-
quire more advanced placements techniques that
work in tandem with the routing algorithms.

Acknowledgements
Part of this work was funded by the Flemish
Research Foundation (FWO-Vlaanderen) through
grant G020421 (GRAPHSPAY) and by the Eu-
ropean Research Council (ERC) through grant
725555 (PhotonicSWARM).

We5.19 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



References
[1] W. Bogaerts and A. Rahim, “Programmable photon-

ics: An opportunity for an accessible large-volume PIC
ecosystem”, IEEE Journal of Selected Topics in Quan-
tum Electronics, vol. 26, no. 5, pp. 1–17, Sep. 2020, Con-
ference Name: IEEE Journal of Selected Topics in Quan-
tum Electronics, ISSN: 1558-4542. DOI: 10.1109/JSTQE.
2020.2982980.

[2] D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref,
“Reconfigurable lattice mesh designs for programmable
photonic processors”, Optics Express, vol. 24, no. 11,
p. 12 093, 2016. DOI: 10.1364/oe.24.012093.

[3] X. Chen, P. Stroobant, M. Pickavet, and W. Bogaerts,
“Graph representations for programmable photonic cir-
cuits”, Journal of Lightwave Technology, vol. 38, no. 15,
pp. 4009–4018, Aug. 1, 2020, ISSN: 0733-8724, 1558-
2213. DOI: 10.1109/JLT.2020.2984990. [Online]. Avail-
able: https : / / ieeexplore . ieee . org / document /

9056549/ (visited on 09/24/2021).

[4] X. Chen and W. Bogaerts, “A graph-based design and
programming strategy for reconfigurable photonic cir-
cuits”, in 2019 IEEE Photonics Society Summer Top-
ical Meeting Series (SUM), Ft. Lauderdale, FL, USA:
IEEE, Jul. 2019, pp. 1–2, ISBN: 978-1-72810-597-0. DOI:
10 . 1109 / PHOSST . 2019 . 8795068. [Online]. Available:
https://ieeexplore.ieee.org/document/8795068/

(visited on 09/23/2021).

[5] A. López, D. Pérez, P. DasMahapatra, and J. Capmany,
“Auto-routing algorithm for field-programmable photonic
gate arrays”, Optics Express, vol. 28, no. 1, p. 737, 2020.
DOI: 10.1364/oe.382753.

[6] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-
based performance-driven router for fpgas”, Third Inter-
national ACM Symposium on Field-Programmable Gate
Arrays, 1995. DOI: 10.1109/fpga.1995.242049.

[7] K. E. Murray, O. Petelin, S. Zhong, et al., “VTR 8: High-
performance CAD and customizable FPGA architecture
modelling”, ACM Transactions on Reconfigurable Tech-
nology and Systems, vol. 13, no. 2, pp. 1–55, Jun. 10,
2020, ISSN: 1936-7406, 1936-7414. DOI: 10 . 1145 /

3388617. [Online]. Available: https://dl.acm.org/
doi/10.1145/3388617 (visited on 10/22/2021).

[8] E. W. Dijkstra, “A note on two problems in connex-
ion with graphs”, Numerische Mathematik, vol. 1, no. 1,
pp. 269–271, Dec. 1959, ISSN: 0029-599X, 0945-3245.
DOI: 10.1007/BF01386390. [Online]. Available: http:
//link.springer.com/10.1007/BF01386390 (visited
on 10/19/2021).

We5.19 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

https://doi.org/10.1109/JSTQE.2020.2982980
https://doi.org/10.1109/JSTQE.2020.2982980
https://doi.org/10.1364/oe.24.012093
https://doi.org/10.1109/JLT.2020.2984990
https://ieeexplore.ieee.org/document/9056549/
https://ieeexplore.ieee.org/document/9056549/
https://doi.org/10.1109/PHOSST.2019.8795068
https://ieeexplore.ieee.org/document/8795068/
https://doi.org/10.1364/oe.382753
https://doi.org/10.1109/fpga.1995.242049
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://dl.acm.org/doi/10.1145/3388617
https://dl.acm.org/doi/10.1145/3388617
https://doi.org/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390

	Introduction
	Problem statement
	Algorithm description
	Preprocessing
	Loop detection
	Test set generation
	Results
	Conclusions
	Acknowledgements

