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Abstract Photonics miniaturization benefits from topological inverse design that favours the use of 
small, difficult-to-fabricate features. We use machine learning to predict the fabrication of a topologically 
optimized mode demultiplexer, then re-simulate and validate its optical performance for cost-efficient 
pre-selection of design prior to fabrication. ©2022 The Author(s) 

Introduction 
The proliferation of integrated silicon photonic 
devices in major applications such as 
telecommunications, computing (including 
quantum and machine learning), and sensing has 
brought on the demand for new device designs 
that are smaller and better performing. New 
design techniques that leverage machine 
learning [1] and/or advanced design parameter 
search algorithms [2] have recently seen a 
significant rise in usage and development, as 
they can optimize highly dimensional designs 
more efficiently. 

Not unexpectedly, these computer-driven 
design algorithms produce devices with highly 
nonintuitive structures that perform better in 
simulation than those of conventional means. 
However, some of the structural features 
generated by the computer algorithm can be 
difficult to manufacture by current 
nanofabrication standards, which typically leads 
to worsened real-world performance. Design 
constraints and cleverly defined optimization 
objective functions can reduce the amount of 
difficult-to-fabricate structural features that 
appear [3, 4], but there is no guarantee of full 
quality, and verification cannot be made until the 
design is fabricated and tested experimentally. 
Furthermore, as the design constraints are 
generally defined by a simple set of guidelines 
provided by the manufacturer (e.g., suggested 
minimum feature size and spacing), the 
optimization can be over-constrained, leading to 
designs that do not capture the full capability of 
topologically optimized inverse design. In other 
words, the computer design algorithm does not 
have an accurate understanding of its complex 
boundaries, which limits peak performance and 
robustness of the device. 

To provide the design algorithm with a 
compact understanding of the manufacturer’s 

fabrication capabilities, we previously developed 
a deep convolutional neural network model for 
rapid and accurate prediction of fabrication 
variations in planar integrated silicon photonic 
devices [5]. With this model, the designer can 
simulate the expected performance of their 
device prior to fabrication and save on lengthy 
and costly re-fabrication runs. In this work, we 
demonstrate the prediction of fabrication 
variations of inverse-designed, topologically 
optimized silicon photonic mode demultiplexers. 
We compare structural similarities between the 
nominal design, the prediction, and the fabricated 
outcome, as well as the corresponding optical 
performance. Good agreement between the 
predicted and fabricated devices are observed. 
We believe this work is the first of its kind in 
silicon photonics, and that it is a major step 
towards new, virtual-experiment-based design 
strategies for highly robust high-performance 
integrated photonic circuits. 

(Prediction of) Fabrication Variations 
Structural variations in planar integrated photonic 
devices heavily depend on the nanofabrication 
process being used. Although our proposed 
prediction method is “fab agnostic,” in that it can 
be adapted to fit any fabrication process, our 
current model is based on the NanoSOI 
Fabrication Service by Applied Nanotools Inc. [6], 
which uses electron-beam lithography (EBL).  

EBL can accurately pattern most of the typical 
silicon photonic devices; however, for small 
device features (which are generally required for 
high-performance designs), accuracy is reduced. 
Because of the effective “blurring” of the design, 
small silicon features are eliminated, and small 
gaps are filled. These variations are caused by a 
complex set of principles such as beam spot size 
limitations, lithographic proximity effects, and 
etch loading effects. These effects can be 
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calculated and potentially corrected for 
analytically by proprietary software [7,8] but are 
not straightforward to integrate into the photonic 
design loop. Further, corrections of process 
variations are intended for microelectronics with 
simple and straight features and require a deep 
understanding of the specifications of the 
nanofabrication process (e.g., electron-beam 
current, photoresist type/thickness, etching rates) 
that are generally unavailable to the end 
designer. Even by adhering to design rule 
constraints set by the manufacturer, and with 
proximity effect correction methods applied by 
them, significant variations still exist, as shown in 
Fig. 1(c). Current, best-practice design 
methodologies apply uniform biasing [3] for 
fabrication calibration, where uniformly widened 
(under-etched) and narrowed (over-etched) 
variations of the design are added to the chip to 
meet the desired performance requirement; 
however, this does not accurately capture the 
nonuniform variations that typically occur. This 
misrepresentation is heightened for fine-featured, 
topologically optimized devices that feature 
curvatures of different degrees and orientation—
all of which experience different amounts of over- 
or under-etch variation. 

In our previous work [5], we developed a deep 
learning model for the prediction of fabrication 
variations in planar integrated silicon photonic 
devices that feature small, difficult-to-fabricate 
features. With a small collection of scanning 
electron microscope (SEM) images, we trained a 
convolutional neural network (CNN) to learn the 
relationship between a design and its fabricated 
outcome (after lithography and etching) so that it 
can make predictions of new, unseen photonic 
devices. The prediction of a given device can 
then be re-simulated to find the expected 
variation in its experimental performance. 
Furthermore, the designer can decide if the 
variation in performance is acceptable or if 
changes to the design must be made. We expect 
these extra computational steps to significantly 
reduce the cost and time spent in re-fabricating 
multiple prototypes. 

Topologically Designed Mode Demultiplexer 
We demonstrate the CNN prediction model by 
applying it to the silicon photonic inverse-
designed three-channel mode-division 
(de)multiplexer (MDM). The device separates 
three optical and orthogonal modes, TE0, TE1, 
and TE2, sent through a 1.5 μm wide multimode 
input waveguide, into three 0.5 μm wide output 
channels in their fundamental TE modes (TE0). 
The footprint of the design area is set to 4.5×4.5 
μm2. The multimode waveguide is placed to the 
left of the design area and three 0.5 μm wide 
waveguide channels are placed on the right with 
1 μm vertical spacing to carry the demultiplexed 
signals. The electric field distribution in Fig. 1(a) 
shows how the TE0, TE1, and TE2 modes are 
routed to the bottom, top, and middle channels, 
respectively, following our earlier work [9]. The 
mesh size for the simulation is 20×20 nm2, and 
the material permittivity values of the mesh grid 
cells are optimized for the desired mode routing 
using the density topology optimization method 
[10]. With different randomized initializations of 
the design parameters, we obtain two designs for 
demonstration: MDM1 and MDM2. 

 
Fig. 1: The (a) electric field distribution showing the TE0, 

TE2, and TE1 modes routed to Channel 1 (bottom 
waveguide), Channel 2 (middle waveguide), and Channel 3 
(top waveguide), respectively. The (b) SEM image and (c) a 
zoomed portion of it with overlayed contours of the original 

design (white) and the fabrication prediction (magenta). 

(b) (c)
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Tab. 1: Comparison of the average simulated transmission and crosstalk performance of two versions of the MDM. 

Device 
Design 
Spec 

(Average) 

Layout 
(L) 

SEM 
(S) 

Prediction 
(P) 

SEM vs Layout 
Difference 

(|(𝑆 − 𝐿) 𝐿⁄ | ∙ 100%) 

SEM vs Prediction 
Difference 

(|(𝑆 − 𝑃) 𝑆⁄ | ∙ 100%) 

MDM1 
Tx 0.9555 0.8447 0.8844 11.6% 4.5% 

XT 0.0109 0.0284 0.0176 160% 38% 

MDM2 
Tx 0.9722 0.9202 0.9138 5.35% 0.7% 

XT 0.0029 0.0115 0.0155 296% 34.7% 
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To illustrate the capabilities of the prediction 
model, Figs. 1(b) and 1(c) show the SEM image 
of one of the MDMs with overlaid contours of the 
original design sent for fabrication and the 
predicted outcome. The typical variations can be 
seen here: sharp convex bends are over-etched, 
sharp concave bends are under-etched, small 
features are washed away or filled, and the entire 
structure has a slight over etch. In Fig. 1(c), the 
prediction shows good agreement with the SEM. 

Experimentally, the performance of MDM1 
drops significantly: average transmission (Tx) 
drops by 11.6%, with respect to the optimized 
design simulation, and the average crosstalk (XT) 
increases by 160%. For MDM2, the degradations 
of the transmission and crosstalk are lower. The 
results are summarized in Tab. 1, which also 
shows that the 3D FDTD simulations of the 
predictions of the structures have better 
agreement with the device performance after 
fabrication (than with having no prediction). 
Although inverse topological design can easily 
find multiple good devices in simulation, some 
may perform worse in experiment, as shown 
here. The prediction model can therefore be used 
to identify the designs which deviate the least 
from the target performance, allowing for pre-
fabrication design selection. 

Further results from the 3D FDTD simulations 
of the nominal design are presented in Fig. 2, 
which show optimistic performance for MDM2, 
with XT below -22 dB across a 100 nm bandwidth 
from 1500 nm to 1600 nm (except slightly worse 
for the XT of the TE2 signal in Channel 1, as 
shown in Fig. 2(a)). However, the experimental 
results in Fig. 2(b) show how much the 
performance of a fabricated device can deviate 
from that of the optimized design (average XT 
increases by ~5.6 dB). Note that the notches in 
the crosstalk spectrum are caused by an 
interference effect between the input and output 
vertical grating couplers. For a fair comparison 

with the predicted structure layout, we simulate 
the SEM image of MDM2. Figure 2(c) shows the 
transmissions and channel XT of the predicted 
structure, which agree closely with the simulation 
results obtained from the SEM image, as shown 
in Fig. 2(d). 

Conclusions 
Machine learning based fabrication variation 
prediction can be a powerful design tool in 
understanding the real capabilities of a photonic 
device design prior to its fabrication. In this work, 
we demonstrate how a CNN model we developed 
can be used to predict the fabricated outcome of 
complex, topologically optimized designs of 
three-channel MDMs. By re-simulating predicted 
designs, we compare the expected performances 
and select the best ones without having to 
validate them experimentally. This significantly 
reduces time and cost in prototyping. For 
demonstration in this work, the expected results 
are verified by experimental results. The check 
and comparison we perform in this work indeed 
lets us choose the best design of possibly many, 
but we envisage a future design methodology 
that integrates the prediction model into the 
optimization process itself, creating highly robust 
high-performance photonic devices in an 
automated way. 
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