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Abstract A silicon photonic integrated coherent transmit & receive optical sub-sssembly with the
baudrate beyond 100Gbaud is developed for the next-generation optical communications. Based on
this device, 1.06Pb/s transmission over 19-core fiber, 16Tb/s transmission over 10000km G.654E fiber,

and 336Tb/s real-time transmission over 332km are demonstrated.
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Introduction
Coherent transmission is widely used in optical
communications due to its ultra-long reach
capacity and high spectral efficiency which is
highly beneficial for high capaticy optical
transmission systems. However, one challenge
hindering the applications of coherent optical
transmission is the complexity of the coherent
optical transceiver, resulting in high cost and
large footprint. Silicon photonics (SiPh) can
integrate complex optical functions of coherent
optics into a single chip thus minimize the
packaging cost and footprint [1,2]. SiPh
integrated coherent transmit & receive optical
sub-sssembly (IC-TROSA) will find wider and
more important applications in future optical
communications.

In this paper, we present our recent work on
a 100Gbaud SiPh IC-TROSA with ball-grid array
(BGA) package technology. Using this high-
performance component, we demonstrate
beyond 1Pbit/s optical transmission over 19-
core fiber, 16Tbit/s Nyquist DP-QPSK
transmission over 10000km fiber, and real-time
336Tbit/s DWDM transmission in 7-core fiber
over 332km. These three experiments fully
verify the potential of our SiPh IC-TROSA in
various application scenarios.

Design and fabrication of SiPh coherent
transceiver

The SiPh IC-TROSA after package is shown in
Fig. 1(a), which consists of a SiPh chip, a driver,
and two transimpedance amplifier(TIA) chips.
The ball-grid array (BGA) package technology is
implemented, see Fig. 1 (b). The four channel
driver and dual channel differential TIAs are flip-

chip mounted on the substrate. Thermoelectric
cooler and hermetic package are not needed.
The footprint of the IC-TROSA component is
13mm X 12mm X 3mm and can be mounted on
the Printed Circuit Board with surface mount
technology (SMT), providing the advantages of
low cost, small footprint and high efficiency in
module production [3].

Fig. 1: Photographs (a) inside and (b) outside of the IC-
TROSA.

Fig. 2: Constellation diagram of (a) 85GBaud 16-QAM
and (b) 100GBaud QPSK.

Inside the IC-TROSA, there is a Si-based
photonics integrated circuit (PIC), which was
fabricated by the standard commercial-silicon-on
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Fig. 3: Experimental set-up for 1.06 Pb/s transmission in a 19-core fiber.

insulator (SOI) wafer with complementary metal
-oxide-semiconductor  (CMOS)  compatible
process. The PIC’s configuration is similar to
that has been introduced in [4]. We integrate 4
MZI modulators [5], 8 high speed photodetectors
(PDs) [6,7], 7 optical power monitoring PDs, 6
thermo-optical phase-shifters (TPS) , 14 variable
optical attenuators (VOAs), several polarization
rotators/splitters [8-10], polarization
combiners/splitters, 90° optical hybrid, optical
power splitters [11] and optical crossings [12] on
a SiPh chip, indicating that all the optics
components of a coherent transceiver are

monolithically integrated except the laser source.

The 3-dB EO and OE bandwidth of the fully-
packaged IC-TROSA is both measured as >
40GHz, both meet the OIF’s class 40 criteria.
We experiment high-baud-rate coherent signal
generation using our SiPh IC-TROSA. A
128Gs/s  four-channel arbitrary waveform
generator (AWG) is connected to the transmitter
and the modulated signal is received by an
Optical Modulation Analyzer (OMA) with a 256-
GS/s sampling rate. 85GBaud PDM-16QAM and
100GBaud PDM-QPSK constellations are
obtained in back-to-back configurations as
shown in Fig. 2. The measured BER is 3.04E-3
and 4.78E-4 for 85GBaud PDM-16QAM and
100GBaud PDM-QPSK, which are under the
threshold of soft decision forward error
correction (SD-FEC). Using this high-baudrate
IC-TROSA, we carried out three experiments of
optical fiber transmission to verify the application
prospect of SiPh in  future optical
communications.

Ultra-high-capacity optical transmission
First, we demonstrate the optical transmission

beyond 1Pbit/s over 19-core single-mode fiber.
The experiment setup is shown in Fig. 3.

Sixteen lasers generate 375 optical carriers with
25GHz spacing covering the C+L band. DFTS-
OFDM(orthogonal frequency division
multiplexing) signal of 149Gb/s net rate is
modulated on each optical carrier using the SiPh
IC-TROSA. After modulation, the signal is split
and amplified in C- or L-band EDFAs before
recombination. The combined optical signals are
then split into 19 channels and launched into the
19-core fiber via a fan-in device. After
transmission, the optical signals are de-
multiplexed via another fan-out device. A 0.4nm
tunable bandpass filter is used to select the test
channel. Signal reception is performed in the
receiver part of IC-TROSA. The BER is
measured for each core for 375-channels. Fig.6
(b) shows the maximum, minimum and average
BER for each channel. The results shown that
all channels have BER below a threshold of
2.0E-2, assumed for soft-decision FEC. This
translates to a raw transmission capacity of
1.06Pb/s for a 20% coding overhead. The
optical spectrum of the 375 channels is also
shown in Fig. 4.
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Fig. 4: Max, min and average BER of the 19 spatial
channels for the 375 measured wavelengths with optical
spectrum.
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Ultra-long-haul optical Transmission

Second, we realize a ultra-long haul optical
transmission using the SiPh IC-TROSA, G.654E
fiber and Raman amplifier [13].

In the experiment, a 50GBaud single-carrier
optical Nyquist DP-QPSK signal is transmitted.
Total capacity of 16Tb/s has been achieved in
the 10000 km fiber link. We further provide the
transmission results of 64GBaud single-carrier
Nyquist DP-16QAM signal. The experimental
results show that 20Tb/s (50Ax400Gb/s) Nyquist
DP-16QAM in 50 WDM optical channels with a
channel spacing of 75GHz in the C-band are
also successfully transmitted over 4000km
G.654E fiber. The BER results are shown in Fig.
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Fig. 5: Measured curve of all the BER of the
transmission signals before and after 10000 km and
4000 km transmission.

Real-time optical transmission using CFP2-
DCO module

At last, we experimentally evaluate the real-time
transmission performance of a seven-core-fiber-
based high-capacity system using a SiPh CFP2-
DCO transceiver module designed for C+L band
operation. The module integrates our SiPh IC-
TROSA and a commercial DSP. 336Tbit/s 120-
channel DWDM signals are successfully
transmitted over 332km with spectral efficiency
of 37.3bit/s/Hz. We investigate the performance
of CFP2-DCO module at selected wavelength in
the optical back-to-back (OBTB) case. Fig. 6 (b)
shows the performances of optical signal-to-
noise ratio (OSNR) versus BER for the test
channel signal. The best application range of
this silicon photonics transceiver is around
1550nm, and it only shows a performance loss
of less than 1dB in the L-band.

20 C+L 120ch 400G DP-16QAM spectrum 1E-1
BER distribution of 120ch after transmission
BER Threshold=2.4E-2

E 0
% - I 1E-2
[ -~ e pm—— il
g i rPTATP | E
a-40 v |
© 1E-3
o
g )
” 1 (@) i ]
-80 . ! 1E-4
1525 1545 1565 1585 1605
Wavelength (nm)
el 1606.50nm
~+1589.25nm
e ~1571.75nm
1563.76nm
1E-2 —=1547.42nm
o 1530.82nm
w
o
1E-3
1E-4

21 23 25 27 29 31
OSNR (dB/0.1nm)
Fig. 6: (a) Transmission performance and spectrum of
120-ch; (b) Back-to-back BER performance at selected
wavelength.

Conclusions

Based on our 1.06Pb/s transmission over 19-
core fiber, 16Tb/s Nyquist DP-QPSK
transmission over 10000km G.654E fiber, and
336Tb/s real-time transmission over 332km are
successfully realized. The optical signals are
modulated and received by a packaged SiPh IC-
TROSA. The experimental results show the
potential of SiPh IC-TROSA as a low cost and
low complexity solution for ultra-high-capacity,
ultra-long-distance and broadband optical
transmission.
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