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Abstract We propose a configuration of an optical parametric amplifier using cascaded PPLN modules 

with different phase-matching characteristics for pump-power-efficient bandwidth extension. We 

demonstrate 8.375-THz (1548.81–1618.86 nm) inline optical amplification with >15-dB gain using the 

proposed configuration under a 125-GHz-spaced 67-channel 800-Gbps/λ WDM transmission condition. 
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Introduction 

Wideband wavelength-division multiplexing 

(WDM) transmission is a key technology to 

improve optical fibre throughput. Deployed WDM 

optical transport networks have typically utilised 

erbium-doped fibre amplifiers (EDFAs). However, 

the amplification bandwidth of EDFAs is usually 4 

THz in C- or L-bands, and expanding optical 

amplification bandwidth is an important research 

topic [1–4]. An optical parametric amplifier (OPA) 

utilising nonlinear optical effects has attracted 

research attention due to its wide amplification 

bandwidth and can amplify various wavelength 

bands [5–8]. A periodically poled LiNbO3 (PPLN) 

waveguide as an optical parametric amplification 

medium has high amplification efficiency without 

excess unwanted nonlinear effects. Therefore, a 

PPLN-based OPA is useful for simultaneous 

amplification of a wideband WDM signal. A 

5.125-THz inline-amplified transmission over 

3×30 km with a 41-channel 800-Gbps/λ WDM 

signal using the PPLN-based OPA was 

demonstrated [9]. In addition, by combining the 

OPA with forward-pumped distributed Raman 

amplification, a 6.25-THz inline-amplified 

transmission over 3×80 km with a 50-channel 1-

Tbps/λ WDM signal was demonstrated [10]. 

In this paper, we propose a configuration of 

optical parametric amplification using cascaded 

PPLN modules for extending amplification 

bandwidth of the OPA without additional pump 

power. Each PPLN module has different quasi-

phase-matching (QPM) condition by waveguide 

temperature control and amplifies a wideband 

WDM signal complementarily. Because 

cascaded PPLN modules share pump light, the 

amplification bandwidth can be extended with 

high pump-power efficiency. We show an 8.375-

THz effective gain bandwidth with a >15-dB gain 

and demonstrate the wideband inline 

amplification of a 125-GHz-grid 67-channel 800-

Gbps/λ signal under a 2×30-km WDM 

transmission condition. 

Proposed OPA using cascaded 4-port PPLN 

modules with complementary gain profiles 

The 4-port PPLN module has low-loss integrated 

pump (de-)combiners using dichroic filters (DFs), 

and its I/O interfaces are four polarisation 

maintaining fibre pigtails [11]. Because optical 

parametric amplification with a PPLN waveguide 

has polarisation sensitivity, a polarisation-diverse 

configuration is used in which orthogonal 

polarisation components of the input signal are 

amplified separately [5]. Each pump light at a 

centre wavelength of QPM band, λ0, is amplified 

by EDFAs and is converted to second harmonic 

(SH) light by second-harmonic generation (SHG) 

with PPLN waveguides. By using different media 

for SHG and OPA, unwanted nonlinear effects 

can be suppressed [12]. The SH pump is 

combined with the signal light and then de-

combined after amplification using DFs. The gain 

bandwidth of a PPLN waveguide depends on its 

QPM condition, which can be controlled by the 

waveguide temperature [13,14]. With an optimal 

temperature for a band around λ0, a flat gain 

spectrum is observed around λ0. By detuning the 

waveguide temperature, the outside gain 

increases while the gain around λ0 decreases, 

and an effective gain bandwidth can be extended. 

Wideband inline optical parametric amplification 

over 5 THz was demonstrated with the 

temperature detuning [9,10]. However, an 
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extension of the effective gain bandwidth is 

limited by a gain decrease around λ0.  

In our proposed scheme as shown in Fig. 1, 

two 4-port PPLN modules are cascaded in one 

polarisation-diverse arm. The second PPLN 

modules (PPLN2&4) amplify the small gain band 

of the first PPLN modules (PPLN1&3) around λ0. 

By this complementary amplification, further 

temperature detuning of the first modules 

becomes available, and an extension of the 

effective gain bandwidth is achieved.  The gain of 

the second PPLN module is set to a narrow 

bandwidth around λ0 by detuning the waveguide 

temperature opposite to that of the first PPLN 

module. The signal amplified by the first PPLN 

module is passed through a band-pass filter 

(BPF) to reject idler light and then is re-combined 

with the SH pump light in the second module. The 

de-combined pump light in the first PPLN module 

is input to the second PPLN module, resulting in 

an extended the effective gain bandwidth without 

increasing power consumption. By narrowing the 

QPM bandwidth of the second modules, reuse of 

the pump light is acceptable with little effect of 

gain saturation because the pump light is not 

consumed for outside-band components.  

 When the OPA amplifies the entire band of a 

WDM signal with a large gain, the wavelength 

dependence of the noise figure (NF) is negligible 

[5,11]. However, in the proposed configuration, 

that dependence becomes apparent because the 

first PPLN module has a large gain gradient. 

Assuming that the NF spectrum of the 

conventional OPA is the reference, the NF 

penalty in the proposed OPA is expressed as 
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where lfilter(f) is the loss spectrum of the idler filter, 

αref(f) is the reference NF, G1st(f) and Gref(f) are 

the gain spectra of the first PPLN module in the 

proposed OPA and conventional OPA, 

respectively, and α2nd(f) is the NF of the second 

PPLN module in the proposed OPA. 

 Figure 2 compares the gain and NF spectra 

of the conventional PPLN-based OPA and 

proposed OPA. The gain and NF spectra were 

measured by sweeping CW light at −15-dBm 

input. The λ0 of PPLN waveguides was 1545.32 

nm (= 194.0 THz). The loss of the BPF for idler 

rejection was <1 dB. The power of the SH pump 

was ~1.6 W. In the conventional OPA, the 

waveguide temperature was detuned so that the 

15-dB gain bandwidth was the widest, and a 

~7.8-THz effective gain bandwidth from λ0 was 

achieved. In the proposed OPA, the first modules 

(PPLN1&3) were detuned to increase the outside 

gain while the gain around λ0 was decreased by 

~10 dB. The second modules (PPLN2&4) 

consisted of low-loss PPLN waveguides 

fabricated with mechanical sculpturing [15] to 

suppress gain reduction in the outside-band 

components and had a gain only in the band 

around λ0. Thus, a ~8.7-THz effective gain 

bandwidth with a >15-dB gain was achieved. The 

input power of the SH pump to the second 

module was ~0.6 W. The maximum NF penalty 

was 1.4 dB, and was in good agreement with the 

 
Fig. 1: Configuration of proposed OPA using cascaded 4-port 

PPLN modules. PBS (PBC): polarization-beam splitter 

(combiner), DF: dichroic filter, BPF: band-pass filter, ATT: 

attenuator, ODL: optical delay line. 
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Fig. 2: Comparison of gain/NF spectrum. Dashed line indicates theoretical NF spectrum of proposed OPA. 
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theoretical value calculated with Eq. (1). Note that, 

193.6–194.0 THz was a guard band due to an 

edge of the idler filter.  

8.375-THz optical inline amplification for 

2×30-km WDM transmission 

Figure 3 shows the experimental setup for the 

2×30-km transmission of a 125-GHz-spaced 67-

channel 800-Gbps/λ WDM signal using the 

proposed OPA. The OPA was used for an inline 

amplifier of the 8.375-THz WDM signal. In the 

transmitter side, a Nyquist-pulse-shaped 120-

Gbaud probabilistically shaped (PS-) 36QAM 

signal was generated using an I/Q modulator 

driven by analogue-multiplexer-based high-

speed digital-to-analogue convertors (AMUX-

based DACs) [16]. The information rate of the 

polarization-division-multiplexed (PDM) PS-

36QAM signal was 8.87 bit per 4D symbol. The 

interference WDM channels were emulated using 

amplified spontaneous emission (ASE) light from 

C- and L-band optical amplifiers [17]. The 

interference WDM signal was spectrally shaped 

and combined with the channel under test (CUT) 

using a wavelength selective switch (WSS), and 

an 8.375-THz WDM signal from 1548.81 nm to 

1618.86 nm was generated. The interference 

WDM signal was rectangularly hollowed out 

around the wavelength of the CUT with a 125-

GHz bandwidth in the WSS. The transmission 

lines were 30-km G.654E SMFs with a ~6-dB 

propagation loss. The average fibre-launched 

optical power was −16.5 dBm/ch. The total input 

power to the proposed OPA was −5.0 dBm. The 

output power from the OPA was 14.7 dBm. After 

transmission, the CUT was pre-amplified by a C- 

or L-band EDFA, extracted by a BPF, and 

received by a coherent receiver. The received 

CUT was digitised using a digital storage 

oscilloscope operating with 256 GS/s and was 

demodulated by offline digital signal processing 

on the basis of a complex 8×2 MIMO equalizer in 

the frequency domain [18]. A normalized 

generalized mutual information (NGMI) was 

calculated from the demodulated signal. 

Assuming a code rate of 0.826 defined in 

accordance with the DVB-S2 and 1.64% pilot-

signal insertion, the net data rate per channel was 

800 Gbps with a NGMI threshold of 0.857 [9].  

 Figure 4 shows the optical spectra input to 

the first or second fibre spans. The optical 

attenuation before the second span was set so 

that the input power to each span at a wavelength 

with the lowest gain was the same. Figure 5 

shows the NGMI of representative channels. All 

measured channels were better than the NGMI 

threshold. The wavelength dependence of the 

NGMI was based on the gain spectrum of the 

OPA, and excessive signal distortion caused by 

the proposed configuration was not confirmed. 

Conclusion 

We proposed a configuration of an OPA using 

cascaded PPLN modules with complementary 

gain profiles to pump-power-efficiently extend the 

effective gain bandwidth. A 0.9-THz (8-nm) 

bandwidth extension was achieved in 

comparison with a conventional PPLN-based 

OPA. We demonstrated 8.375-THz optical inline 

amplification using the proposed OPA under a 

2×30-km WDM transmission condition. 

 
Fig. 3: Experimental setup for 2×30-km transmission using proposed OPA. ECL: external cavity laser, IQM: I/Q modulator, PDME: 

polarization-division multiplexing emulator, WSS: wavelength selective switch, and VOA: variable optical attenuator. 
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Fig. 4: Spectra of input to first span and second span. 

 

Fig. 5: NGMI spectrum of PDM-PS-36QAM signals. 
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