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Abstract A neural network is quantized for the mitigation of nonlinear and components’ distortions in
a 16-QAM 9x50km dual-polarization fiber transmission experiment. Post-training additive power-of-two
quantization at 6 bits incurs a negligible Q-factor penalty. At 5 bits, the model size is reduced by 85%,
with 0.8 dB penalty.

Introduction

The interaction between the chromatic disper-
sion (CD), Kerr nonlinearity and amplified spon-
taneous emission noise limits the capacity of op-
tical fiber. Signal processing, such as digital back-
propagation (DBP), is applied at the receiver (RX)
to mitigate channel impairments. Neural networks
(NNs) have recently been studied for equalization
in optical fiber communication[1],[2]. Compared to
model-based equalizers such as DBP, NNs do not
require information about the channel, and may
offer low-complexity mitigation of impairments[3].

To implement NNs in electronic receivers, it is
necessary to quantize the NN model and per-
form computation in fixed-point arithmetic. In gen-
eral, weights, biases, activations and the data
set can be quantized. Quantization and pruning
of NNs can reduce the computational complex-
ity and memory requirements considerably, while
maintaining roughly the prediction accuracy

In this paper, we study several algorithms
for the quantization of NNs used for nonlin-
earity mitigation, in a 16-QAM 34.4 GBaud
dual-polarization transmission experiment, over 9
spans of 50km of optical fiber. A low-complexity
NN is considered, consisting of two parallel con-
volutional layers followed by a hidden dense layer,
placed after the linear DSP chain at RX. We com-
pare post-training, training-aware, additive power-
of-two (APoT)[4], uniform, non-uniform, fixed- and
mixed-precision quantization, where the convolu-
tional and dense layers are, respectively, quan-
tized at b1 and b2 ̸= b1 bits. Mixed-precision post-
training APoT quantization at b1 = 6 and b2 = 8

bits is obtained with a Q-factor penalty of less
than 0.5 dB. The Q-factor begins to drop rapidly
below the cut-off values bc1 = bc2 = 6 bits. For in-
stance, at 5 bits, while the model size is reduced

by 85%, the penalty is 0.8 dB. The Q-factor as
a function of the launch power is compared for a
number of quantization algorithms and rates. The
comparison shows that mixed-precision training-
aware APoT and fixed-precision post-training uni-
form quantization are, respectively, methods of
choice at high and low number of bits (e.g., b1,2 ≤
8).

Optical fiber transmission experimental setup
The fiber-optic transmission experiment setup is
shown in Fig. 1. At the transmitter (TX), two
sequences of bits for the x and y polarizations
are mapped to two sequences of complex sym-
bols taking values in a 16-QAM constellation, and
modulated with root raised cosine (RRC) pulse
shape with the roll-off factor 0.1 at 34.4 GBaud.
The two complex-valued digital signals are con-
verted to four continuous electrical waveforms
corresponding to the I and Q signals of the x

and y polarizations by an arbitrary wave generator
(AWG) that includes digital-to-analog converters
(DACs) at 88 Gsamples/s. The electrical signals
are converted to optical signals and polarization
multiplexed with a Pol-Mux IQ modulator, driven
by an external cavity laser (ECL) at wavelength
1.55 µm with line width 100 KHz. The resulting
optical signal is sent over a straight-line optical
fiber link in a lab, with 9 spans of Truewave Classic
Fiber (TWC) of length 50 km. An Erbium-doped
fiber amplifier (EDFA) with 5 dB noise figure is
placed at the end of each span to compensate
for the fiber loss. The fiber has 0.23 dB/km loss,
2.8 ps/(nm-km) CD, and 2.5 (Watt · km)−1 non-
linearity parameter. The channel operates in the
nonlinear regime at high powers, considering the
low dispersion and high fiber nonlinearity param-
eter; see Fig. 2.

At the receiver, the optical signal is polarization
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Fig. 1: Experimental transmission setup.

demultiplexed and converted to four electrical sig-
nals using an integrated coherent receiver, sam-
pled by analog-to-digital converters (ADCs) at the
rate of 50 Gsamples/s, and equalized using the
conventional linear DSP chain. The linear DSP
performs CD compensation, MIMO equalization
(with radius directed equalizer), polarization sep-
aration and carrier phase estimation (CPE). Fi-
nally, the resulting signal is passed to a low-
complexity NN for the mitigation of nonlinearities
and distortions introduced by devices.

Low-complexity NN for nonlinearity mitigation
The NN takes four real-valued vectors, corre-
sponding to the real and imaginary parts of the
samples of the signals of the x and y polariza-
tions, performs nonlinear regression, and outputs
two real numbers for each polarization symbol. A
number of architectures are evaluated. Given the
limitations of the practical systems, we consider
a low-complexity model, with a complex-valued
convolutional layer with no activation, processing
the signals of the x and y polarizations. The com-
plex convolution is implemented using two paral-
lel real-valued filters of length 41. There are to-
tal 82 filter tap weights, far fewer than in generic
convolutional layers used in the literature with nu-
merous feature maps. The output of the convolu-
tional layer is then fed to a fully-connected layer
with 100 neurons, and tangent hyperbolic (tanh)
activation. Finally, there is an output layer with 2
neurons for each polarization symbol. Nearest-
neighbor symbol detection is applied at the end
to detect the symbols of the x and y polarizations.
Note that joint processing of the two polarizations
in the dense layer is necessary in order to com-
pensate nonlinear interactions between the two
polarizations during the propagation. The NN op-
erates in a sliding-window fashion: as the vector
at the input of the NN is shifted forward two steps
in time, one complex symbol is produced.

Few-bit quantization of the NN equalizer
The parameters (weights and biases) of the NN,
activations and input data are initially real num-
bers represented in float 32 (FP32), described,

e.g., in the IEEE 754 standards. To implement the
NN in hardware efficiently, these numbers must
be represented by fewer number of bits, e.g., in
INT8 format. Thus, the real numbers are quan-
tized in a codebook with a finite set of discrete val-
ues W =

{
0, w(1), · · · , w(N)

}
. The quantization

rate of W or precision is defined to be b = log2 N

bits.
There are two forms of quantization in machine

learning. In post-training quantization (PTQ),
training is performed in full (FP32) or half (FP16)
precision. The input tensor, activation outputs,
and the resulting weights are then quantized and
used in inference[5]. PTQ is fast, but that may
come at the expense of accuracy. On the other
hand, in training-aware quantization (TAQ), quan-
tization is co-developed with the training algo-
rithm. This often results in improved prediction
accuracy, because the quantization noise is ac-
counted for[6]. In this paper, we maximize the
Q-factor by searching over a number of TAQ al-
gorithms, notably, the straight-through estimator
and several gradient approximation techniques.
However, TAQ is less suited to real-time process-
ing in high-speed transmission, because it has a
higher computational cost than the PTQ (hundred
epochs may be required to gain accuracy) and re-
quires hyper-parameter tuning.

In uniform quantization, the quantization sym-
bols w(i) are placed uniformly between a mini-
mum and maximum weight. Let w be an un-
quantized parameter anywhere in the NN, (a, c)
the smallest interval containing the quantized pa-
rameters, N = |W| − 1 and s(a, c,N)=(c −
a)/(N−1). In uniform quantization, the quantized
weight is ŵ=rs(a, c,N)+a, where r=⌊(c(w, a, c)−
a)/s(a, c,N)⌉, c(w, a, c)=min(max(w, a), c) is the
clipping function and ⌊.⌉ is nearest integer. Quan-
tization is said to be of static range if a and c are
known and hard-coded a priori in hardware. The
same values are used in training and inference,
and for all runs. In contrast, in dynamic range
quantization, a and c are computed separately for
each component of the network.

The distribution of weights of the NN is of-
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Fig. 2: a) Gain of the unquantized NN over linear DSP. Q-factor penalty of b) PT and c) TA quantization with fixed-precision.
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Fig. 3: Comparison of the quantization algorithms, described
in the text, at b1 = 6.

ten Bell shaped. Thus, non-uniform quantiza-
tion can provide better performance, by assigning
more symbols to dense regions. But, non-uniform
quantization is not hardware friendly. The power-
of-two (PoT) quantization[4] simplifies the imple-
mentation by converting multiplications to addi-
tions. Here,

W(α, b) = ±α
{
0, 20, 2−1, · · · , 2−(N/2−1)

}
,

where N = 2b and α is stored in FP32, but is
applied after the multiply-accumulate operations.
In additive PoT, each quantization symbol is sum
of n PoT values, for some n ∈ N. Choose a base
number of bits b0 such that n = b/b0 is an integer.
Then, W ′(γ, b)=γ

∑n−1
i=0 2−iWn(α, b0) + β, where

γ and β are scale and shift factors in FP32 that
are trainable, and the set power is per component.
It can verified that |W ′| = 2b. The shift parameter
β allows restricting to unsigned weights.

In mixed-precision quantization[7], the convolu-
tional layer is quantized at b1 bits and the dense
layers at b2 ̸= b1. In fixed-precision, b1 = b2.

Q-factor penalty of quantization algorithms
Fig. 2 (a) shows the Q-factor gain of the unquan-
tized NN over linear DSP. The gain results in part
from the mitigation of dual-pol nonlinearities, and
is roughly equal to the DBP gain with large num-

ber of spatial steps[3]. The Q-factor penalty of
PTQ with fixed precision b1 = b2 is presented in
Fig. 2 (b). PTQ at 6 bits results in a Q-factor drop
of 0.7 dB at −2 dbm and 1.9 dB at 2 dbm. It can be
seen that the quantization penalty increases with
the transmission power. TAQ improves the per-
formance, reducing the Q-factor drop to 0.5 dB
at −2 and 1.2 dB at 2 dBm, as shown in Fig. 2
(c). We compare three quantization algorithms
in Fig. 3. Here, the blue and red bars represent
Q-factors at lunch power -2 and 2 dBm, respec-
tively. The baseline is the Q-factor of the un-
quantized (UQ) NN. In the quantization scheme
TAQ-6, uniform fixed-precision TAQ is applied at
b1 = b2 = 6 bits. PTQ-8 corresponds to uniform
mixed-precision PTQ, with b1 = 6 bits for the con-
volutional layers and b2 = 8 bits for the dense.
PTQ-8 outperforms TAQ-6, as the Q-factor drop
compared to the unquantized NN is reduced to
0.3 dB at −2 dBm and 0.34 dB at 2 dBm. Al-
though b2 = 8 in PTQ-8 compared to 6 in TAQ-
6, PTQ-8 is a compelling solution since quantiza-
tion is done offline after the training. Consider-
ing the bell-shaped distribution of the weights of
the dense layer, it makes sense to assign more
quantization symbols around the mean. APoT-8
corresponds to APoT mixed-precision PTQ, with
b1 = 6 bits for the convolutional layers and b2 = 8

bits for the dense layer. APoT-8 yields the best
performance, with a Q-factor penalty of < 0.2 dB
at −2 and 2 dBm. Further, APoT-8 has the lowest
complexity, since multiplications are implemented
by additions in APoT quantization.

Conclusions
We compared post-training, training-aware, ad-
ditive power-of-two, uniform, non-uniform, fixed-
and mixed-precision quantization of the NNs used
for nonlinearity mitigation. A NN is quantized at 6
bits/weight with a Q-factor penalty of <0.5 dB, in
a dual-pol fiber-optic transmission experiment.
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