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Abstract Proximal events posing risks to network service were classified using Decision Trees on State
of Polarization Multivariate Time Series data. Aggregate features of interests were individually evaluated
to determine their significance, demonstrating that a combination of two aggregates sufficed to produced
98.8% event classification accuracy.

Introduction
Advancements in digital signal processing with
coherent receivers have allowed for detailed mon-
itoring of State of Polarization (SOP) in fiber optic
networks. Events occurring near fiber optic ca-
bles present themselves as discernible character-
istic signatures in SOP measurements. The fiber
acts as a medium of propagation for an underly-
ing ground truth which can be used as a sensor
for observing surrounding events[1],[2].

Classification of the signatures enables iden-
tification of the underlying events. Some of the
events previously identified through SOP mea-
surements are fiber break detection[3]–[5], earth-
quake detection[6], property surveillance[7], and
even robotics[8]. One can also imagine other sce-
narios where SOP is used for surveillance, such
as detecting ships or fiber tap detection.

In our work, we explore the use of Decision
Trees (DT) for event classification[9]. Implement-
ing ML methods in such applications provides im-
proved automation and less need for hands-on
domain-specific knowledge. DT in particular are
advantageous for their interpretability.

Multivariate Time Series Data
The dataset is comprised of 16,551 multivari-
ate time series (MTS) SOP recordings, initial-
ized to the North pole of the Poincaré sphere
and encoded in the quaternion domain[3] as
a(t), . . . , d(t). The MTS were generated in lab
conditions using an Arduino controlled robot arm
programmed to produce one of four distinc-
tive event categories: ’bending’ (2873), ’shak-
ing’ (1922), ’small hit’ (6561), and ’up and down’
(5195)1, seen in Figure 1.

1Human inspection revealed that the data as originally pro-
vided had at least one mislabeled event; the first instance la-
beled ’small hit’ seemed to better fit the pattern of ’shaking’.
Numbers presented here incorporate this correction.

The MTS were sampled at a rate of 1920 Hz
for a duration of 8128 samples (4.23 seconds).
The event triggers had been previously aligned,
with 256 samples recorded prior and 7872 sam-
ples recorded since the event start.

Fig. 1: Samples of the SOP MTS in the quaternion domain.
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Fig. 2: Histograms over various individual features

Feature Engineering

Aggregate features of interest which had previ-
ously been discovered from the dataset[3] were
focused on two ranges: t ∈ [0.9525, 1.9835] and
t > 1.9835. These correspond roughly to the first
half and the second half of the MTS.

In order to aggregate over these two ranges,
we exclusively used the summation of absolute
values of the variables b(t), c(t) and d(t); we did
not use a(t) as it was simply a value of 1, give or
take some noise, since the SOP measurements
are on the Poincaré sphere; moreover, we did not
elect to use other aggregate functions for engi-
neering features, such as mean or max, as these
were found to be highly correlated with the sum.

Additionally, the frequency domain was ex-
plored for extraction of potential aggregate fea-
tures, both directly for the MTS as well as for the
envelopes of the d(t) variable; however, both were
rejected as the plots were less clearly discernible
by event type than they had been in the quater-
nion domain.

Fig. 3: Separable features: sum absolutes of d(t) over first
half and second half

Figure 2 presents the histograms of some fea-
tures selected for further examination and use in
the DT classification; histograms for b(t) in the
first half, and c(t) in either the first or second half
greatly resembled that of subfigure (d) and were
not included due to limited space. Feature scaling
was not necessary in preparation for DT.

Many of the features individually do not pro-
vide statistical separability of the classes (subfig-
ure (d)); however, when features are examined
concurrently they produce a space of separable
clusters by event type, as seen in Figure 3.

Anomalous event MTS which clustered within
dissimilar event categories revealed the potential
that more than one event might appear consecu-
tively within the frame of a single event, as seen in
Figure 4. The existence of such events suggests
that fixed-size frames for classification are not ap-
propriate, as the length of event signatures varies
according to the event type, and may even vary
for a single event type, as seen for the ’bending’
events in Figure 1.

Fig. 4: Anomalous sample: a ’shaking’ type event which
presents the characteristic shape of of ’small hit’ events in the

latter half of the frame.

Decision Tree Classification Results
As a baseline classifier, event cluster ranges from
the single feature

∑
|d(t)| shown in Figure 2(a)

were manually evaluated, thus classifying events:
’up and down’ (0-10), ’shaking’ (10-18), ’bending’
(18-48), ’small hit’ (48-89). The result of this clas-
sification can be seen in Figure 5(a), giving an
overall accuracy of 90.9%.

Comparison of aggregate features suggests
that those based on the d(t) variable showed that
they outperformed both b(t) and c(t) over similar
ranges, as seen in Tables 1 and 2; when points
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Fig. 5: Confusion matrices

on a sphere cluster about the pole of an axis, the
rotations about that axis produce the most iden-
tifiable signatures. This can be seen in Figure 1
where the d(t) variable is the most identifiable of
the event signatures. In particular, aggregates of
d(t) of ranges of either the earlier half or later half
of the time series were better at differentiating be-
tween ’shaking’ and ’up and down’ type events,
or ’bending’ and ’hit’ type events, respectively, as
seen in Figure 1 (b) and (c).

Tab. 1: Accuracies of single-feature DTs

Feature Accuracy∑
|d(t)|, t ∈ [0.9252, 1.9835] 82.8%∑

|d(t)|, t > 1.9835 85.9%∑
|b(t)|, t ∈ [0.9252, 1.9835] 55.6%∑

|b(t)|, t > 1.9835 54.6%∑
|c(t)|, t ∈ [0.9252, 1.9835] 54.2%∑

|c(t)|, t > 1.9835 56.3%

Tab. 2: Feature importance for multi-feature DT

Feature Importance∑
|d(t)|, t ∈ [0.9252, 1.9835] 61.3%∑

|d(t)|, t > 1.9835 36.9%∑
|b(t)|, t ∈ [0.9252, 1.9835] 0.4%∑

|b(t)|, t > 1.9835 0.3%∑
|c(t)|, t ∈ [0.9252, 1.9835] 0.6%∑

|c(t)|, t > 1.9835 0.5%

As the two features selected in Figure 3 sug-
gests separability, as well as suggesting the high-
est feature importance according to Tables 1 and
2, a DT classifier was evaluated using only these
features with a 10%-90% test-train split. This pro-
duced a 98.8% classification accuracy, as com-
pared to the 98.1% accuracy using the Naive
Bayes method[3], with confusion matrices seen in
Figure 5 (d) and (e) respectively.

Conclusions
We demonstrated the simplicity of the classifica-
tion on the given dataset: a baseline accuracy of
90.9% was achieved using a manually designed

single-feature classifier, where the singular fea-
ture was an aggregate which did not require lim-
itation to a narrower time range. In general, ag-
gregates based on the d(t) variable produced the
most accurate DT classifiers. Additionally, the
data poses a limitation: since the events were
recorded individually, it does not providing any
suggestion as to how concurrent events might in-
teract on a single cable. It is unclear if concurrent
events would stack or if they would cause destruc-
tive interference. Future work should examine
implementation on more representative datasets,
particularly field data[4].

Further improvements upon this method could
include limiting depth or pruning the DT. Although
the DT classifier produced a higher accuracy than
had been previously achieved[3], the anomalous
samples inspected, such as the one presented
in Figure 4, suggest that this method may not
be effective in field applications where events
were not so neatly separated, and where differ-
ent event types may have vastly different lengths
of signatures. Thus, future research into lo-
calization for events is needed. For this task,
CNN[10]–[12] demonstrates promise in similar ap-
plications. Such unsupervised algorithms would
additionally provide better automation, and may
even uncover event types not previously consid-
ered.
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