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Abstract Targeting component fault location in optical networks, we propose a strategy based on 
attention mechanism, which includes three attention models. Simulation results indicate that the 
proposed strategy can achieve improvement of location accuracy by focusing on more critical monitoring 
data. ©2022 The Author(s)

Introduction 
In the foreseeable 6G and F6G, the traffic data of 
optical networks show an explosive growth trend, 
which puts forward higher requirements for 
network reliability. The inevitable network faults 
caused by aging or human error may result in 
massive data loss. Consequently, it is essential 
for network operators to accurately locate faults. 
A well-known approach is mining alert text 
information through deep learning [1-3]. However, 
it may rely heavily on historical experience and 
not be able to locate new faults. Recently, high-
accuracy optical performance monitors (OPMs) 
and telemetry systems have been applied to 
network management [4]. They can provide 
precise and real-time physical-layer monitoring 
data (MD) to the network controller. Several 
studies locate faults by analyzing the correlation 
between MD [5-6]. Nevertheless, they usually 
locate a node fault only, not more precisely to a 
component in the node, which could lead to much 
additional cost of fault recovery. To accurately 
locate component faults, numerous OPMs are 
required to be deployed in optical networks for 
acquiring physical parameters of components. 
Due to the scale of such networks, the volume of 
MD is quite large, which poses a great challenge 
for fault location. Among MD, those near the 
faulty components are more critical to locate 
faults. Therefore, filtering out them from large-
scale MD could be extremely helpful for achieving 
accurate component fault location. 

Attention mechanism is an effective way to 

focus on the important information from massive 
input for the current task, which originates from 
the study of human vision [7]. Fig. 1(a) shows the 
comparison of introducing attention mechanism 
and not for data processing. When not 
introducing attention mechanism, all MD would 
be assigned a same weight. On the contrary, the 
introduction of attention mechanism can assign 
larger weight for more critical MD, assisting the 
fault location model to make more accurate 
decisions. 

In this paper, we propose a fault location 
strategy based on attention mechanism (FL-AT) 
to locate component faults in optical networks 
with network-wide MD. We compare the 
performance of FL-AT with artificial neural 
networks (ANN) in partial telemetry scenarios [8]. 
Simulation results show that FL-AT can focus on 
the more critical MD and outperform ANN with 
respect to the accuracy of fault location. 

Components and OPM Deployment 
Fig. 1(b) shows the architecture of networks, 
where a hybrid optical-electrical switching node 
consists of an electrical switch (E-Switch) and a 
broadcast-and-select (B&S) reconfigurable 
optical add/drop multiplexer (ROADM) [9]. On the 
link, fibers are used for long distance 
transmission of signals. Line erbium doped fiber 
amplifiers (line-EDFAs) are placed between fiber 
spans to compensate attenuation. In the node, a 
signal is launched by a transmitter (Tx) and 
received by a receiver (Rx). Arrayed waveguide 
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Fig. 1: (a) Comparison of introducing the attention mechanism and not for data processing; (b) Architecture of network with 
hybrid optical-electrical switching nodes. 
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gratings (AWGs) achieve signal (de)multiplexing. 
Pre-EDFAs are used to compensate component 
insertion loss. Splitters broadcast signals to each 
direction of ROADM and wavelength selective 
switches (WSSs) achieve flexible add/drop 
switching. We refer to the components on the link 
collectively as link components, and in the node 
as node components. OPMs are deployed at 
input and output ports of line-EDFAs, pre-EDFAs 
and WSSs. We also assume that each Tx and Rx 
is equipped with an internal OPM. In our work, the 
power data in MD are used to locate component 
faults. 

Framework of FL-AT  
Fig. 2 shows the framework of FL-AT, which 
adopts three attention models for data 
processing, namely long short-term memory 
network with attention mechanism (LAT), 
channel attention mechanism (CAT) and graph 
attention network (GAT). 
Link Representation. We transform the power 
data on the link to a power sequence. Since these 
data are intrinsically correlated, LAT is 
implemented to extract sequence features [10], 
whose structure is shown in Fig. 2(b). We regard 
the input data as Key-Value pairs. Dot product is 
used to calculate the similarity between Key and 
Query for obtaining the weight corresponding to 
the Value. The larger the weight is, the more 
important the Value is. The output of LAT is 
obtained through a fully connected layer (FCL), 
whose input is the Value after weighted 
summation. 
Node Representation. When passing through 
ROADMs, a signal would enter from one direction 
and depart from another. For instance, as shown 
in Fig. 1(b), signal1 launched by Tx1, enters 
ROADM from direction1 through AWG1, and 
leaves from direction2 through pre-EDFA1, 
splitter1 and WSS2. We view such a path as a 
channel. The power data of the OPMs it passes 
by could be regarded as a power sequence. 
There are plenty of channels like this in a 
ROADM. Therefore, we transform the power data 

in a node to a power matrix shown in Fig. 2(c), 
where each row denotes a power sequence. If 
the length of a sequence less than 5, e.g., 
direction2 to direction3, we employ -200 dB to fill 
it. CAT can create different score to each channel 
[11]. The larger the score is, the more important 
the sequence is. As shown in Fig. 2(d), we first 
adopt global pooling to squeeze the number of 
features of each sequence to 1. Then, it is 
followed by a dimension reduction layer, a 
dimension increase layer and a sigmoid 
activation to create a score for each channel. 
Next, scores are multiplied with the 
corresponding sequences. Finally, an FCL is 
used to complete the feature extraction. 
Network Representation. We transform the 
network topology to the graph shown in Fig. 2(e) 
and take it as input of GAT. The solid nodes are 
initialized by the output of LAT and the hollow 
nodes are initialized by the output of CAT. For 
each node, GAT can generate different attention 
weights to it and its neighboring nodes via a 
graph attention layer [12]. The information of 
nodes with larger attention weight is aggregated 
more during node updating. In addition, multi-
headed attention is introduced to help GAT 
perform better aggregation of node information. 

At last, a fully connected neural network 
(FCNN) is applied to make decisions, which 
outputs a set of component fault probability 
values. The component with the highest 
probability is identified as the faulty one. 

Simulation Results and Analysis 
We evaluate FL-AT on a topology with 9 hybrid 
optical-electrical switching nodes and 24 
unidirectional fiber links as shown in Fig. 2(a). 
The length of each fiber link is 100 km, which is 
composed of 5 20-km fiber spans and 4 line-
EDFAs. We assume 3 wavelengths in a fiber, and 
each of them works at 10 Gbps. We simulate 100 
static traffic demands whose source-destination 
and bandwidth are extracted from a real network 
operator in China, and the routing and 
wavelength assignment (RWA) follows the 
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Fig. 2: Framework of FL-AT. (a) Network topology; (b) LAT for link power data processing; (c) Node power matrix; (d) CAT for 
node power data processing; (e) Input graph of GAT; (f) GAT for network-wide power data processing. 
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strategy of minimizing the number of wavelength-
links (MinWL) [13]. There is a total of 386 
components in the simulation network and their 
parameters are summarized in Fig. 3(a). We 
assume that a component is in fault when its 
parameter reaches abnormal value. In addition, 
we suppose that the receive power of a Rx will to 
-200 dB when it fails. Owing to the powerful 
robustness of optical networks, the probability of 
simultaneous fault of two or more components is 
quite low [14], so only single-fault scenarios are 
considered in our simulation. We generate 
22,383 fault data, of which 80% are used for 
training and 20% for testing. 

The training process of FL-AT is described in 
Fig. 3(b). The loss drops sharply at beginning, 
and eventually stabilizes at 0.006 after 850 
epochs, simultaneously the accuracy reaches 
100%. Fig. 3(c) shows the weights of the power 
data on the link from node 0 to 1 when locating a 
line-EDFA fault on it. The data near the faulty 
component (P0 and P1) are assigned larger 
weights by LAT. Fig. 3(d) displays the score of 
each channel in node 7 when locating a splitter 
fault in it. The channel passing through the faulty 
device acquires a relatively higher score from 
CAT. Thus, LAT and GAT can effectively focus 
on the critical MD of links and nodes respectively. 
We next present the location accuracy of FL-AT 
in partial telemetry scenarios, where only a 
certain ratio (i.e., 90%) of randomly selected MD 
from nodes and links, respectively, is available. 
The results of Fig. 3(e) demonstrate that FL-AT 
shows better performance than ANN and 
achieves a maximum improvement by 5.6% in 70% 

telemetry. Nonetheless, on the one hand, the 
enhancement effect is very slight in higher 
telemetry. That is because ANN can exhibit 
robust data mining capability when the datasets 
is complete. On the other hand, the improvement 
is also quite minimal in lower telemetry. The 
reason is that excessive data loss may severely 
impair the training effect of FL-AT, rendering it 
unable to notice the more critical MD. To verify 
the effect of each attention model on accuracy 
improvement, we remove LAT, CAT, both LAT 
and CAT from FL-AT respectively and test their 
performance of locating different component 
faults in 70% telemetry. We also test the 
performance of FL-AT and ANN. The results of 
Fig. 3(f) reveal that GAT makes a significant 
contribution to fault location. Despite the poor 
performance in locating some component faults 
(i.e., Tx), the introduction of LAT and CAT 
generally improves the accuracy of link and node 
component fault location, respectively. 

Conclusions 
In this work, we propose an FL-AT strategy for 
component fault location with analysis of large-
scale MD. We verified its feasibility for improving 
fault location accuracy by focusing on the more 
critical MD. Our work achieves more precise fault 
location in optical networks, which can reduce 
much unnecessary cost of fault recovery. 
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