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Abstract A variational-autoencoder based data augmentation technique was investigated to improve 

the quality and increase the amount of data for optical network failure management. Augmentation 

provided significant performance improvement in terms of reduction in machine-learning training time 

for soft-failure detection (37.56%) and cause identification (66.5%). ©2022 The Author(s)

Introduction 

Machine learning (ML) is expected to offer great 

potential for realizing autonomous optical 

networks [1]. Therefore, its applications for 

optical networks are being extensively studied. 

Numerous such applications are highlighted in 

[2,3], with optical network failure management 

(ONFM) being one of the most promising one [4]. 

Within ONFM, the majority of current works 

focuses on the investigation of different 

ML techniques for improved failure detection, 

localization and cause identification, under the 

assumption of the availability of sufficient good 

quality datasets. As a result of this assumption, 

less effort is made to improve data quality, which 

is a key requirement for ML. One of the ways to 

improve data quality is to introduce class 

balance. In a balanced dataset, no class is under-

represented. However, in optical networks, some 

failures are more common than others, resulting 

in an uneven distribution of observations for 

different failures within the dataset. The training 

of ML models for ONFM with such imbalanced 

datasets may result in a bias towards the majority 

(more common failure) class, affecting the overall 

performance in terms of accuracy and/or training 

time. 

     This paper focuses on data augmentation 

(achieved with variational-autoencoder) to 

address the imbalanced nature of actual 

experimental datasets (hereinafter referred to as 

real data). The obtained results suggest that 

combining synthetic samples with the real 

imbalanced training data to balance all soft-

failure classes in it (such a balanced dataset 

hereinafter referred to as modified data), can 

result in considerable performance improvement 

in terms of reduction in training time (more than 

60% improvement was achieved for soft-failure 

cause identification). Moreover, results suggest 

that the data augmentation can save resources 

because less faulty lightpaths need to be 

deployed for the collection of data. 

 

Experimental Setup and Data Acquisition 

The experimental testbed shown in Fig. 1, was 

used for the data collection. It consisted of four 

spans of single-mode-fiber, denoted by S1, S2, 

S3, and S4, each one 80 km long. To compensate 

for fiber losses, four erbium doped fiber amplifiers 

(EDFAs) were used, marked as A1, A2, A3, and 

A4. A wavelength selective switch (WSS) was 

placed at the end of S2 to produce different soft-

failures in the system. To realize the transmitter 

(Tx) and receiver (Rx), commercial coherent 

transponders were used. 

    The input and output power levels at each 

amplifier, as well as bit error rate (BER) and 

optical signal-to-noise ratio (OSNR) at the 

receiver, were extracted from the testbed. For 

normal operation, the central frequency (fc) of 

WSS was set to 192.3 THz and the attenuation 

and bandwidth of WSS were set to 0 dB and 37.5 

GHz, respectively. Five different soft-failures 

were considered and their configuration details  

are given in Tab. 1. 

Tab. 1: Considered Soft-Failures 

 

Soft-Failure 

Filter 

Bandwidth 

(GHz) 

 

Attenuati-

on (dBs) 

 

fc (THz) 

0: Filtering  26 0 192.3 

 1: Attenuation 37.5 6 192.3 

2: Attenuation+ 

Filtering  

 

26 

 

6 

 

192.3 

3: Change in fc + 

Filtering 

 

26 

 

0 

 

192.32 

4: Change in fc 37.5 0 192.32 

Fig. 1: Experimental Testbed setup 
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Proposed Approach 

For data augmentation, we used a variational-

autoencoder (VAE) [5] based technique shown in 

Fig. 2.  

     A VAE has an encoder and a decoder (both 

are usually neural networks) like a classical 

autoencoder (AE) but a VAE can be considered 

as the generalization of an AE to a generative 

model. VAE gets generative capabilities because 

its encoder is designed to enforce a probability 

distribution (gaussian in our case) on the 

attributes of latent space (i.e., output of encoder 

denoted by z in Fig. 2). During training, the VAE 

determines the optimal distribution parameters ( 

and ) for each latent space attribute and then 

the distribution is randomly sampled using 

reparameterization trick [6] given by Eq. (1). 

          𝑧𝑗 = 𝜇𝑗 + 𝜎𝑗 ⊙ 𝜀                (1) 

where j and j are the mean and standard 

deviation of the learned distribution for the jth 

attribute of latent space (zj), respectively, and  is 

used for random sampling and follows a normal 

distribution N(0,1). Such sampling enables VAE 

training because it makes backpropagation of 

error possible [6].  

     The VAE decoder takes a randomly sampled 

latent space vector as input and provides an 

output that should ideally be the same as the 

encoder’s input. However, due to the imperfect 

training of VAE, the decoder’s output is slightly 

different from the actual input, but it keeps the 

same underlying pattern as the encoder’s input. 

In this way, if we sample the latent space multiple 

times, we can generate a large number of 

synthetic samples.  

     We employed a synthetic samples selector 

after the VAE’s decoder, which selects synthetic 

samples that lie close to the real data in M 

dimensional space, where M is the number of 

input features. It accomplishes this by computing 

the Euclidean distance between each synthetic 

sample of any given soft-failure class and the 

mean of that same soft-failure class in the real 

data and then selects only the number of samples 

required to achieve a balance in the dataset. 

     For our analysis, the meaningful input features 

were BER, OSNR, and the input power at A2. The 

number of attributes in the latent space was set 

to 2, and there was one hidden layer in the 

encoder containing 4 neurons. The decoder had 

2 neurons in the input layer, 4 in the only hidden 

layer and 3 in the output layer. The sigmoid 

activation function was used for the output layer 

of the VAE and where required, ReLU was used 

as activation function for the intermediate layers. 

We sampled the latent space ten times and then 

decoded it, which increased the available data by 

a factor of 10. Then, in order to obtain a modified 

dataset, the synthetic samples selector was 

employed to select the required number of 

synthetic samples for each soft-failure class. 

Results  

Fig. 3 shows the performance of the real and 

modified training dataset, as well as the validation 

data, in terms of (a) loss and (b) accuracy for soft 

failure detection. In general, the loss value 

(determined by a cost function) indicates how a 

model performs after each training iteration 

(commonly known as an epoch), and the model 

performance improves by minimizing this loss. 

On the other hand, accuracy is a more 

interpretable metric as it provides the ratio of 

correct classifications to the total number of 

classifications made by the ML model.  

Fig. 2: Proposed Data augmentation approach; VAE 

followed by a synthetic sample selector 

Fig. 3: Soft-Failure Detection Performance Evaluation vs. time; (a) Model Loss, (b) Model Accuracy  

A = (28.31, 1.0)  

A 
B 

B = (45.33, 1.0)  
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     We used a simple neural network with a single 

hidden layer for failure detection, and as shown 

in Fig. 3(b), the model achieved a training and 

validation accuracy of 1.0 (i.e., 100%) with both 

the real and modified training data. It is because 

our data was separable (i.e., non-overlapping) in 

3D space; however, it is worth noting that with the 

modified training data, 100% validation accuracy 

was achieved in 28.31 seconds using our system 

Intel Xeon W-2255 CPU @ 3.70GHz with NVIDIA 

RTX A5000 GPU. But with the real data, the 

same accuracy was achieved after 45.33 

seconds, implying a 37.56% reduction in training 

time with the modified data. This 37.56% lesser 

training time is related to the degree of imbalance 

between normal observations (1232) and failure 

observations (954). As shown, the use of a 

balanced dataset significantly improved the 

performance. Following this training, both cases 

attained 100% accuracy on the same test 

dataset. It should be noted that only the training 

dataset was modified, and the validation and test 

datasets were kept unchanged. Moreover, no 

regularization was applied to the model used for 

soft-failure detection, which allowed us to 

observe that modified data did not result in any 

overfitting (as also indicated by Fig. 3). 

     After soft-failure failure detection, the next 

step is to identify its cause which is a more 

complex problem than the simple detection of the 

failure. In the real training dataset, we had 110, 

74, 485, 126 and 159 observations respectively 

for each considered soft-failure (see Tab. 1). This 

imbalance was removed by adding synthetic 

samples which resulted in a modified dataset with 

485 observations for each failure type. For this 

multi-class classification, another simple neural 

network with one hidden layer was employed, but 

this time there were 5 neurons in the output layer. 

Fig. 4 presents a comparison between the results 

obtained using the real and modified training 

datasets for soft-failure cause identification. 

Similar performance as for failure detection was 

achieved for soft-failure cause identification, but 

this time modified data led to the reduction of the 

training time by 66.5% when compared to using 

the real data. This is a consequence of having a 

class imbalance higher in this case than in the 

failure detection case. 

     This improvement in performance enabled by 

the balanced dataset is explained as follows: to 

achieve 100% accuracy, the ML model must see 

enough samples from each soft-failure class 

during training to determine the underlying 

pattern of that class. However, with an 

imbalanced training dataset, it sees an unequal 

number of samples in each epoch, requiring 

additional epochs/time to see enough samples 

from the underrepresented soft-failure classes. In 

contrast, with a balanced training dataset, the 

model sees enough samples of all soft-failure 

classes in fewer epochs, allowing it to attain 

100% accuracy on unaugmented and even 

imbalanced validation and test datasets. 

Conclusions 

We investigated a variational-autoencoder based 

data augmentation technique to optimize ML for 

optical network failure management. The 

obtained results suggest that data augmentation 

can minimize the amount of resources required 

to obtain sufficient and suitable data for training 

ML models. Moreover, the training time for ML 

models with modified dataset (real + augmented) 

can be significantly reduced which is desired for 

the periodic re-training of ML models. Based on 

the degree of imbalance in the real training 

datasets, the training time of employed ML 

models was reduced by 37.56% for soft-failure 

detection and 66.5% for the cause identification 

with the modified training datasets. 
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Fig. 4:  Soft-Failure Cause Identification Performance Evaluation vs. time; (a) Model Loss, (b) Model Accuracy 
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