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Abstract: A novel AI-based co-cable and co-trench optical fibre detection method is proposed based 
on twin neural network and extraction of multimodal features, e.g. fibre static, dynamic, and site features. 
The detection accuracies of the solution in the test and field trial network are over 90%. ©2022 The 
Author(s)

Introduction 
Current optical cable resources are dumb, 
lacking in effective monitoring and O&M 
strategies, which actually allow primary and 
secondary services or associated services to be 
deployed on the same optical cable (co-cable). If 
a single optical cable used by both the primary 
and secondary services becomes disconnected, 
both services would fail simultaneously. This 
leads to service interruptions and the potential for 
networks to become isolated. Co-cable 
information is maintained through manual line 
patrols and manual input. As the network 
changes, co-cable data in the resource 
management system becomes more complex, 
lagging and subsequently offers low co-cable 
identification efficiency and accuracy. 

Optical fibres of a co-route (co-cable or co-
trench) share the following features due to their 
close proximity and similar laying modes: 
1. Similar optical fibre type and aging features 

[1-3], meaning the inherent static features of 
the fibres are similar. 

2. Same or similar response to external 
vibration [4-8], meaning the dynamic features 
of the fibres are similar. 

3. Close geographical proximity. 
In this paper, we utilize the similar features 

shared by two fibres of a co-route, so that co-
routes can be identified using AI technology 
based on static optical parameters, dynamic 
vibration features, and site location. The 
detection accuracies of the solution in the test 
and field trial network are over 90%. 

Technical Principle of Proposed Solution 
As we mentioned above, two optical fibres of a 
co-route should have similar static features, 
dynamic features, and site location features. 
Since the number of optical fibres in the fibre 

optic network is huge (at the magnitude of 10,000 
or even 100,000), if only one feature is used as a 
determinant, it is very easy to misidentify a co-
route. Therefore, in order to improve the 
detection accuracy of the system, a multimodal 
data fusion scheme is applied. Under the 
multimodal scheme, the entire transmission 
system deploys Intelligent Sensing Units (ISU) at 
the source and sink nodes of the optical section 
(OTS). The ISU can monitor a number of optical 
fibres simultaneously. The system also deploys 
an Intelligent Identification Unit (IIU) to implement 
co-route detection, as shown in Fig.1. The ISU 
can collect data measured by optical time domain 
reflectometer (OTDR), phase OTDR (φ-OTDR) in 
real time. It can perform millisecond-level 
collection of scattering features generated by 
fibre deterioration, fibre breakage, and fibre 
bending, as well as polarization features 
generated by running vehicles, excavation, and 
walking and running pedestrians. The large 
amount of data collected by ISU is compressed 
and extracted features using the twin neural 
network before sending them to the IIU. Finally, 
the co-route identification module in the IIU 
analyzes the fibre feature data to determine the 
co-route segments of the optical fibre. 

In our solution, optical fibres are used as 
sensors to collect data. Fig. 2 shows the 

 
Fig. 1: The proposed solution architecture. 
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hardware architecture of the ISU, including the 
three modules consisting of the transmitters 
(LTLS, OM, EDFA, and Filter), receiver, and 
computer. 

The linewidth tunable light source (LTLS) can 
work in broadband mode or narrowband mode. 
When the LTLS works in broadband mode, as 
shown in Eq. (1), the slope of the detected 
Rayleigh scattering curve is related to fibre loss 
and can be used to detect fibre quality. When 
operating in narrowband mode, as shown in Eq. 
(2), interference occurs in the Rayleigh scattering, 
and when there is an external signal intruding, the 
phase of the interference signal changes due to 
the external intrusion and the change is linear to 
the intrusion signal. By using this relationship, the 
optical fibre can sense the external vibration and 
identify the dynamic features of the fibre. 
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where IR(z)/φR(z,t) is Rayleigh scattering echo 
intensity/phase, IL(z)/φL is local oscillator 
intensity/phase, Ir is echo intensity。   

As shown in Fig. 3, the static feature of the 
optical fibre has greater attenuation at the points 
where the fibre is spliced or bent. When there is 
no external intrusion/disturbance, the signal 
obtained by the receiver is stable in the time 
domain. In the presence of external disturbances 
(knocking, excavating, vehicle running, etc.), the 
amplitude of signal fluctuation is visibly increased 
within the disturbed section of the optical fibre [8]. 

After receiving optical fibre features from the 
ISU, the IIU segments the fibre by a fixed length 
and uses a signal processing method and deep 
neural network to convert related data to the 
fibre’s signature (fingerprint). By comparing 
fingerprint information of the fibre segment by 
segment, it becomes possible to determine 
whether the fibre shares a co-route with another 
fibre.  

Co-route detection is a typical contrastive 

learning task that can be completed using the 
twin neural network architecture [9-10]. The twin 
neural network consists of two sub-networks that 
have the same structure and that share weights. 
Each sub-network contains m convolutional 
layers and n fully connected layers. By separately 
training the two sub-networks, eigenvectors and 
site geography information are obtained. A new 
eigenvector is then formed by concatenating this 
logical information. The degree of similarity 
between two fibres can then be found using the 
similarity matching layer. 

As shown in Fig. 4, the input for the 
supervised twin neural network is data from static 
fibre features, dynamic fibre features, and site 
location features. The output label of co-routed 
fibres is set to ‘1’ (positive), while the output label 
of non-co-routed fibres is set to ‘0’ (negative). In 
the trial network, the data of manual/mechanical 
excavation, pedestrian walking, and vehicle 
driving under the soil conditions of sand, gravel, 
cement, etc. have been collected, but soil 
conditions/external vibration are more diverse in 
field trial networks. Due to the variance in 
different networks AI models encounter problems 
with generalization. Therefore, in the field, the 
model will first collect a small amount of fibre data 
and perform few-shot transfer learning on the 
pre-weighted neural network [11]. 

Experiment Verification 
More than 100 scenarios were tested in the test 
site, featuring different burial depths (1.2 m to 2.4 
m), distances (0 km to 50 km), soil textures (sand, 
soil, gravel, concrete), and fibre-optic wrapping 
materials (bare fibre, PVC, silicon core tube). 
Different external factors were also considered, 
for instance, rubber hammers may be used to 
strike the well wall or soil; pedestrians may walk 
and run in the test site; vehicles may drive 
through or idle in the test site; and excavation and 
mechanical tamping may be conducted in the test 
site.  

Fig. 5 shows the waterfall diagram of events 
collected by ISUs on the field trial network, 
including manual excavation, vehicle driving, and 
excavator excavation. The x-axis corresponds to 
space and the y-axis corresponds to time elapsed. 

 
Fig. 4: Structure of Deep Twin Neural Networks. 

 
Fig. 2: Architecture of the Intelligent Sensing Unit. 

 
Fig. 3: Static and Dynamic Fibre Features. 
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In manual excavation, labeled as “manual 
knocking”, a shovel is used to dig on the ground. 
The vibration generated by the shovel will 
propagate in the direction of space and effect a 
segment of fiber, so the resulting output contains 
horizontal stripes. The excavator excavation 
event is labeled as “excavator construction” and 
generates an output at a fixed point in the figure, 
showing that the signal is bright relative to other 
signals in the figure because of stronger vibration. 
The output also displays relatively blurry 
horizontal stripes. One possible cause for this 
could be the impact from the vibration of the 
excavator’s engine. Lastly, the “vehicle driving” 
event clearly shows the movement of the vehicle 
tracked through the dimensions of space and 
time elapsed.  

Fig. 6(a) and 6(b) show waterfall diagrams 
generated by two fibre features in the same 
trench section, where Fig. 6(a) is one fibre feature 
located at a distance of about 10 km from the 
monitoring site A , and 6(b) is the other fibre 
feature at a distance of about 30 km from the 
monitoring site B. Although the signal-to-noise 
ratio in 6(b) is lower than that of 6(a), the degree 
of similarity between the two images is 0.955 and 
the excavator excavation and vehicle driving 
events can still be recognized. 

Fig. 7 show waterfall diagrams generated by 
fibre features that are not in the same trench 
section. The subfigures (a-f) show events such as 
vehicles driving and excavator driving; however, 
the events are distributed in different 
geographical locations, so the features of the 
various events are dissimilar.  

Our scheme has been verified in the test and 
field trial network, the results are summarized in 
Table 1.  

A、In test trial network，a total of 5948 test 
cases were run, of which 588 cases involved co-

routed fibres and 5360 cases involved non-co-
routed fibres. 541 co-routed fibre test cases were 
successfully identified, and 47 cases remained 
undetected, the correct detection rate is 92.0%. 
24 non-co-routed fibre were wrongly identified, 
the false positive rate is 0.45%. 

B、In filed trial network，583 test cases were 
run, of which 401 cases involved the same trench 
section and 182 cases involved different trench 
sections. Test results show a detection rate of 
91.52% and a false positive rate of 1.1%, which 
preliminarily proves the feasibility and 
effectiveness of the solution. 

Conclusion 
The isolation of primary and secondary routes is 
critical for ensuring communication reliability. 
However, traditional optical cable resources rely 
on manual operations, which is inefficient, costly, 
and fails to provide dynamic service. This paper 
proposes a new optical fibre co-route detection 
technology to serve as a Shared Risk Link Group 
intelligent identification solution. The technology 
uses a multimodal data analysis architecture to 
precisely extract the static, dynamic, and site 
location features of fibres. The twin neural 
network is then used for implementing intelligent 
detection of a co-route. The detection rate on the 
field trial network is greater than 90%, offering 
higher detection accuracy and efficiency than the 
traditional manual method. 
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Fig. 5: Waterfall Diagram of Dynamic Features. 

 
Fig. 6: Waterfall Diagrams of Features of Different Fibres in 
the Same Trench Section. 

 
 

 
Fig. 7: Waterfall Diagrams of Features of Different Fibres in 
Different Trench Sections. 

Tab. 1: Confusion Matrix for Co-Route Detection  

Confusion Matrix Predict 
Positive Negative 

Test Trial 
Network Actual Positive 541 47 

Negative 24 5336 
Field Trial 
Network Actual Positive 367 34 

Negative 2 180 
Note: Positive – co-routed fibre pairs, Negative: non-co-routed 
fibre pairs. 
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