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Abstract In-memory computing can trade computational accuracy for power saving. We consider the implementa-
tion of a nonlinear demapper for coherent optical transceivers and use Lipschitz constraints to increase robustness
against device variations. Offline experiments demonstrate that for 64QAM we can recover the performance of a
digital implementation. ©2022 The Authors

Introduction
In reliable long-range and high-speed optical com-

munications, nonlinear equalization and demapping
are needed to compensate for transmission impair-
ments. Soft demapping deploys soft-decision forward
error correction (FEC) to translate a received symbol to
its soft bits. The soft bits, expressed as log-likelihood
ratio, represent the level of confidence of each bit being
0 or 1. Recently equalization and soft demapping of re-
ceived symbols have been implemented using neural-
networks (NNs)[1] due to their intrinsic parallelization
and the availability of large amount of training data.

Previous work has introduced NN architectures for
equalization and soft demapping in optical systems.
In[2]–[4], several NN soft demappers are proposed for
quadrature amplitude modulation (QAM) systems. In
these methods, NN models calculate the log maximum
of the posterior probability (log-MAP). In[5],[6], a NN
demapper structure with memory taps similar to that
of a Volterra series[7] is presented.

However, NNs require a huge number of multiply-
and-accumulate (MAC) operations. Besides, one NN
inference step on digital accelerators requires a huge
number of parameters to be loaded and stored. The
transfer of these parameters consumes a high en-
ergy[8]. To address such challenges, analog in-memory
computing (IMC) platforms based on emerging de-
vices, e.g., resistive RAM (RRAM), have been intro-
duced[9]–[11]. In such accelerators, weights of NNs
are represented with the conductances of RRAM cells.
Such accelerators perform MAC operations based on
Ohm’s law and Kirchhoff’s current law, so that a high
computation and energy efficiency can be achieved.
According to[9], the energy efficiency of IMC is 17 times
of that of digital implementations.

Despite the advantages of the analog-based com-
puting platforms, they suffer from manufacturing pro-
cess variations and noise[12]. The physical parame-
ter variations of RRAM cells lead to deviations of the
programmed conductance from the nominal value and
thus deviations of the corresponding weights of NNs.
The perturbed weights cause the feature maps at the
output of layers to become erroneous. The errors in

feature maps are amplified as they go through subse-
quent layers. Accordingly, the accuracy of NNs imple-
mented with IMC degrades significantly.

In the context of image processing, previous work
addresses the performance degradation of NN mod-
els in IMC accelerators. For example, the effect of
device variations is compensated by variation-aware
training[13],[14]. Variations are modeled as functions
of random variables to train NNs statistically[15]. The
method in[16] uses a variation-aware mapping in which
large weights are represented by RRAM cells with
smaller variations. However, this method needs prior
knowledge of the variation profile, which requires costly
testing and measurement of each manufactured chip.

In this work, we investigate the effect of process vari-
ations in IMC on the performance of NN soft demap-
pers. We adopt the NN architecture introduced in[5]

as a soft demapper study case. A novel training tech-
nique which adopts Lipschitz constant constraints on
each NN layer is introduced to mitigate the effect of
weight variations in IMC accelerators. The Lipschitz
constraints enhance NN robustness by preventing vari-
ation amplification inside NNs. The values of Lips-
chitz constants for each layer are determined by par-
ticle swarm optimization (PSO) to achieve a robust per-
formance.

Variation Model and Performance Degrada-
tion

Various variation models have been proposed to
model weight deviations. One of them is the log-normal
model[13],[16],[17]:

wlogNormal = wnominal ∗ eθ, θ ∼ N(0, σ2) (1)

where wnominal is the nominal value of the trained
weight, θ is an independent random variable following
normal distribution for this weight, and σ is the standard
deviation of this random variable. Another model is the
normal model[14],[18],[19]:

wNormal ∼ N(wnominal, (σ ∗ wnominal)2). (2)

Both models are used in the following experiments to
demonstrate the performance degradation under varia-
tions and the effectiveness of the proposed method.

For the demonstration of the variation effects and the
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Fig. 1: NN soft demapper performance degradation

effectiveness of the proposed solution, the NN demap-
per architecture in[5] is adopted. The architecture of
the NN demapper has 2 hidden layers, an input layer
and an output layer. The input layer contains the cur-
rently received input signal and time delayed versions
of the input signal in order to consider the memory ef-
fects of the channel and components. The architec-
ture deploys a dual-side symmetric memory structure.
The input layer has 2M + 1 neurons where M denotes
the number of single side memory taps. The output
layer has m neurons where m is the number of bits per
real (imaginary) symbol, e.g., m = 3 for the adopted
64-QAM. The number of neurons at each layer of the
adopted NN is 17/16/10/3.

The performance metric is the achievable rate per
real (imaginary) dimension. The achievable rate is cal-
culated from the soft bit l and the actual transmitted bit
b as follows[20]:

R = m−min
s≥0

1

n

n∑
i=1

m∑
j=1

log2[1 + exp(−s(2bij − 1)lij)]

(3)
where n is the total number of training symbols. lij

and bij are the j-th soft bit output generated by the NN
and the true output for the i-th input training symbol,
respectively. The negative/positive sign of lij defines
the decision of 0/1, respectively. The magnitude of lij
defines the confidence level of the decision.

Figure 1 shows the mean values and the standard
deviations of the achievable rate by the adopted model
on the dataset, as described in the experimental setup
section, under different levels of weight variations. The
left figure shows the results with the log-normal model
in equation (1) and the right figure shows the results
with the normal model in equation (2). The solid lines
in the middle of the ranges represent the mean val-
ues and the ranges represent the standard deviations.
In this demonstration, 250 NN weights samples have
been simulated at each σ value denoted on the x-axis.
According to Figure 1, the achievable rate degrades
significantly even with relatively small variations, which
makes the NN demapper unusable in practice.

Proposed Robust IMC Accelerators
For a function f , the smallest value of the non-

negative constant k for which the following constraint
is satisfied:

|f(x1)− f(x2)|p ≤ k |x1 − x2|p , ∀x1,x2 ∈ X (4)

is denoted as the Lipschitz constant of f , namely
L(f) = k. f is called k-Lipschitz constrained[21],[22].
|·|p is the p-distance metric between two vectors. The
Lipschitz constant k describes how much a variation of
an input is scaled at the output by this function. The
composition of multiple Lipschitz constrained functions
is also Lipschitz constrained as follows:

f = (fl ◦ fl−1 ◦ ... ◦ f1)(x) (5)

L(f) ≤ kl · kl−1 · ... · k1. (6)

The forward propagation of a neural network can be
considered a composition of successive layers. Ac-
cordingly, imposing Lipschitz constraints on each layer
can prevent the variations in feature maps from being
magnified when feature maps travel through layers in a
neural network.

The transfer function of a layer in a NN can be writ-
ten as the composition of f ′i and fϕ. f ′i = w · x + b

implements the multiplication of a weight matrix w and
an input vector x and the addition with a bias vector b.
fϕ is the activation function, e.g., tanh. The Lipschitz
constant of the tanh function used in[5] is equal to 1.
Accordingly, we only need to restrict the Lipschitz con-
stant of f ′i to suppress variation amplification through
this layer as:

|(w · x1 + b)− (w · x2 + b)|p ≤ k |x1 − x2|p (7)

⇔
|w · (x1 − x2)|p
|x1 − x2|p

≤ k (8)

where x1 is the nominal input to this layer and x2 is
the input affected by variations to this layer.

The function in (8) can be expressed further as

sup

(
|w · (x1 − x2)|p
|x1 − x2|p

)
=‖ w ‖p≤ k (9)

where ‖ . ‖p is the p-norm of a matrix. This function
also shows that the variation propagation in a layer can
be suppressed by constraining ‖ w ‖p. In the proposed
method, we use the L2 norm to bound w in each layer.

To provide flexibility for different layers in a neural
network, we constrain the L2 norm of the weight matrix
for different layers with different values. For example,
the L2 norm of the ith layer is constrained with a value
ki during software training with the projection:

φ(wi, ki) =
1

max(1, ‖wi‖2
ki

)
wi (10)

where the max function is to guarantee that when
the L2 norm of wi is larger than ki, wi will be scaled to
make the L2 norm of the scaled matrix to be ki; Other-
wise, wi will remain unchanged. Since the rescaling of
a weight matrix with (10) might lead to a performance
degradation, the input signals are thus amplified to re-
cover the performance of the NN.

To determine the best k for each layer, we use the
particle swarm optimization (PSO) algorithm[23]. The
PSO search is initiated with 20 particles and executed
until the search converges. During the search, a candi-
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Tab. 1: Experimental results of Lipschitz constant constraint.

Error model
Bitrate

Original model Proposed method
σ = 0 σ = 0.5 σ = 0.5

LogNormal 2.83 1.1 2.54
Normal 2.83 1.09 2.51

date solution is evaluated by training the target NN with
the Lipschitz constraints defined by the solution. The
fitness of the solution is evaluated as follows:

fitness =
∑

i=0,0.1,..,1

Rσ=i − stdσ=i (11)

where Rσ=i, and stdσ=i are the mean and standard
deviation of the achievable rate of the evaluated model
at variation level σ = i, respectively. During each it-
eration, the particles are then updated until the search
converges.

With the PSO search, we can obtain the best Lip-
schitz constraint setting and its trained model with re-
spect to all variation levels. The performance of the
Lipschitz constrained model for each variation level can
be further boosted by fine-tuning the weights where
variation-aware training at each specific σ value is con-
ducted. During variation-aware training, weight varia-
tions are incorporated into the training process by sam-
pling the variation model.

Experimental Setup / Data Acquisition
A coherent single carrier transmission over 80km

G.652 fiber link at optimal launch power of 6.6 dBm is
employed to experimentally evaluate the performance
of the NN using IMC, as shown in Figure 2. The chan-
nel under test (CUT) carries a 80GBd DP-64QAM sig-
nal with gross data rate of 960Gb/s. Assuming 15%
overhead for FEC and 3.47% overhead for training se-
quences, the net bit rate is 800Gb/s. At the transmitter,
a constant amplitude zero auto-correlation (CAZAC)
training sequence[24] is inserted for framing, carrier fre-
quency offset and channel estimation. The electrical
signals of the arbitrary waveform generator (AWG) are
amplified by four 60GHz 3dB-bandwidth amplifiers. In
the optical domain, two tunable 100 kHz external cavity
lasers (ECLs) are used at the transmitter and receiver,
respectively. The optically modulated signal is ampli-
fied by a booster EDFA. The receiver consists of an
optical 90◦-hybrid and four 100GHz balanced photodi-
odes. The electrical signals are digitized by an oscillo-
scope with 256GSa/s and 110GHz 3dB-bandwidth.

Experimental results
To evaluate the effectiveness of the proposed frame-

work, the NN demapper architecture in[5] is tested over
the dataset as described previously. The variation mod-
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Fig. 3: Performance of the Lipschitz constrained model with and
without fine-tuning vs the original NN and state of the art[14] at

different variation levels

els in (1), and (2) are used in the experiments. To
evaluate the performance with the proposed method,
weights in the neural network were sampled 250 times
according to the variation models. In each sample, the
achievable rate was evaluated with (3).

Table 1 summarizes the results showing the perfor-
mance of the proposed method when σ in (1), and (2)
was set to 0.5. This variation setting is already very
large for RRAM cells[13],[14],[16]. The column σ = 0 in Ta-
ble 1 shows the inference accuracy of the original NN
model without variations. When variations with σ = 0.5

are applied to the weights in the original model, the
achievable rate degrades from 2.83 down to as low as
1.09 in average. The last column shows the bitrate
with the proposed method, which is similar to that of
the original model without variations.

To demonstrate the effectiveness of the proposed
method under different levels of variations, we com-
pared the bitrate of the Lipschitz constrained network
with fine-tuning with that achieved by the original net-
work, the Lipschitz constrained network without fine-
tuning and the method in[14]. The results are shown in
Figure 3, where the solid lines represent the mean val-
ues and the ranges represent the standard deviations.
According to this comparison, the proposed method
can achieve the best performance under different vari-
ation levels.

Conclusion
A novel training method is proposed to counter de-

vice variations for a soft demapper NN implemented
with IMC. The method is based on constraining the Lip-
schitz constants of NN layers. Experiments demon-
strate that the achieved bit rate can be recovered from
as low as 1.08 to 2.54 for the demapper NN in a 3 bit
per symbol 64-QAM system.
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