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Abstract A simple one-step state model is used to track the DFE error propagation for 4-PAM. The
knowledge of DFE output states is used to improve LLR accuracy. Demapping via DFE state tracking
outperforms bit-interleaving and precoding schemes for the 802.3ca LDPC code by 0.76 dB.

Introduction

Data center interconnects are currently under-
going a transition from 400Gb/s to 800Gb/s.
As intensity modulation (IM) and direct detec-
tion (DD) scheme has been widely employed
in transceivers, advanced coded modulation
(CM) schemes that can accommodate such high
speeds and also meet low complexity, low-cost
and low-latency requirementsl!! are desirable. 4-
ary pulse amplitude modulation (PAM) is a cru-
cial element in these CM schemes due to its good
spectral efficiency delivered with simple direct de-
tection®). Another important element is forward
error correction (FEC), which is a key enabler
to maximize link budget and relaxing component
specifications. Despite relative high power con-
sumption, powerful soft-input FEC such as low-
density parity-check (LDPC) codes appear to be
a more appealing choice than hard-input FEC.

The high data rates imply worse inter-symbol
interference (ISI). This can be resulted from IMDD
optical links, or bandlimited components from ex-
isting interconnects. Currently, simple equaliza-
tion schemes like feedforward equalization (FFE)
and decision-feedback equalizers (DFE) can can-
cel ISI. However, DFE causes error propagation,
leading to residual distortions in the equalized sig-
nal. The DFE error propagation is harmful to FEC
decoding. When hard-input FEC is used, the de-
coding is negatively affected by the frequent ap-
pearance of consecutive errors per codeword®l.
As for soft-input FEC, error propagation affects
the log-likelihood ratio (LLR) distribution which
strongly impairs the decoding performancel®.

In the presence of DFE, mismatched LLRs are
calculated by assuming only additive white Gaus-
sian noise (AWGN) imposed on the equalized
symbols. More sophisticated approaches such
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as the Bahl-Cocke-Jelinek-Raviv algorithm® or
the soft-output Viterbi algorithm!®7l can be used
for accurate LLR output but at the cost of high
complexity. Alternatively, the detrimental impact
of error propagation can be alleviated by us-
ing bit-interleaving or precoding, as done, for in-
stance, in the IEEE 802.3ca standard!®l. However
both these techniques have drawbacks: interleav-
ing increases latency and cannot cope with mis-
matched LLRs®, whilst typically no soft-output is
available with a precoding scheme. In fact, the im-
pact of DFE error propagation can be analyzed by
using a finite-state transition model describing the
evolution of the decision errors. To evaluate bit
error rate (BER) of FEC, several finite-state tran-
sition models have been proposedEH B,

In this paper, a scheme is proposed to improve
the LLR calculation for DFE-equalized channels.
The proposed scheme consists of two stages.
First, a one-step state transition model within DFE
tracks the state probabilities recursively. Second,
the state probabilities are used in the LLR calcu-
lation. The proposed scheme outperforms both
interleaving or precoding with mismatched LLRs
in terms of post-FEC BER performance.

4PAM DFE State Tracking

In this paper, we consider a partial response (PR)
channel with two-tap impulse response [1, ] as
shown in Fig. [1} which is also considered inl#l. At
time instant 4, the received symbol is given by

Yi = x; +oxi—1 +ny, (1)

where n,; stands for the AWGN with noise vari-
ance 0%, and z; € X = {+1,+3} (4-PAM). The
minimum euclidean distance of X’ is d = 2.

DFE cancels the ISI in y; by exploiting the pre-
vious hard decision (HD) z;_4, i.e.,

Y =Y —adi_1, (2)
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Fig. 1: Block diagram of PR channel transmission setup using state-tracking DFE and state demapper.

where z;_; is obtained by comparing 7, _, using a
three-level slicer {0, +d}. This decision operation
is denoted as &;_1 = F(y;_1)-

The error produced by DFE is e; = z; — i,
where e; € {0, +d, +2d, £3d}. After the DFE feed-
back (shown as a black loop in Fig. [1), e; lead
to different biased states for y;, which from
gives 5, = z; + n; + ae;—1. For high signal-to-
noise ratios (SNRs), the majority of errors occur
between neighbouring symbols. Hence, the re-
duced sete;_1 € S = {—d,0,d} is considered in
this paper. The resultant state is represented as
s; € {l,c,r}, which stand for left-biased, center,
and right-biased states, respectively.

The state probabilities conditioned on the pre-
vious equalized symbol are of our interests, and
thus a vector P; is defined as

Pi = I:P(Silyi717?i727' . )} ) Si = Z,C7 T. (3)

The summation of P, elements is 1. We assume
xo = 0, and thus the first transmitted symbol z;
does not experience ISl and P; = [0, 1,0].

To track the evolution of the DFE states, we pro-
pose to use a finite-state machine as shown in
Fig. |2l The nodes and edges indicate the states
and their transitions. The state transition proba-
bility is defined as Ps)s £ P(s;[7;_1, si—1), which
depends on the observation of y,_; and s,_;. Two
major loops in Fig. [2| characterize the DFE be-
haviour. The blue loop indicates an error-free out-
put, where the state stays at c¢. The error propa-
gation is captured by the red loop between [ and
r. In this loop, DFE will make decisions with a
bias +ad, and becomes more susceptible to an
error. If the error propagation continues, the next
state will be directed to the opposite side, forcing
errors d and —d occur in turn.

Based on the state transition model, P; then
can be inferred recursively, i.e.,

P;=P; 1A, (4)

where A;_; is a matrix of Pgs. Compared to
standard DFE, state tracking only requires a re-
cursive operation, as emphasized in blue in Fig.[T]

The key to the recursive inference is A;_1. We

Pr\r = P(c|g;_q,¢)

Py

Fig. 2: DFE state transition model. Error propagation is
highlighted with red and error-free output with blue.

start by considering an intermediate matrix B;_1.
By defining an offset ¢, we assume a Gaussian
distribution 7, ; ~ N(2;_1 + ¢,02), and its prob-
ability density function (PDF) is denoted as ¢(¢).
When &; 1 = +1, B;_, is given by

pld+ad) ¢(ad) ¢(—d+ad)
B, ;= ¢ (d) ¢ (0) ¢ (=d)
p(d—ad) ¢(—ad) ¢(—d—ad)

(5)
When %;_ is the outermost symbol, as there is no
neighbouring symbol on either side, the error can
only lead to one biased state. Therefore, when
Z;—1 = —3 or 3, the left or right column of B;_; in
(5) is set to a zero column vector. Finally, A;_; is
obtained by doing a row normalization on B;_;.

State Demapper

A typical soft demapper after DFE implicitly as-
sumes the DFE is constantly in state ¢ (correct
decision on the previous symbol). After dropping
the time index i, the resulting mismatched LLR is
then given by

e fyx @)

6
Soexs Frn@e) O

Ly =log

where k = 1,2, and X} C X are 4-PAM symbols
labeled by a bit b € {0,1} at position k. f3x (¥lz)
is the PDF given by the distribution 3 ~ N (z, 02).

The state demapper takes advantage of the
different state probabilities inferred by the state-
tracking DFE and computes the LLR at time i as

Disclaimer: Preliminary paper, subject to publisher revision

European Conference on Optical Communication (ECOC) 2022 ©
Optica Publishing Group 2022



We3C.2

-~ DFE

|— AWGN

--- DFE with Interleaving

-= DFE with Precoding DFE with STD ‘

@

Pre-FEC BER
Post-FEC BER

13.8 14 14.2 | 14.4

7

107!

1072

Post-FEC BER
S

TAWGN
10761 ZCapacity

Y L02dBY

10105 11 115 12 125 13 135 14 145 15 155 1070608 1 121416 1.8 2 222426238 3
Pre-FEC BER 1072

SNR [dB]

)10 10.5 11 115 12 125 13 135 14 145 15 155
SNR [dB]

1(

Fig. 3: (a) Pre-FEC BER vs. SNR; (b) Pre-FEC BER vs. Post-FEC BER,; (c) Post-FEC BER vs. SNR.
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7)
where ¥’ = [v,,7,, -, Y, denotes the vector of
past equalized symbols. In (7), frix,s@lz,s) is
given by y ~ N(z + ¢,0?), where ¢ = —ad, 0, ad
for states [, ¢, and r, respectively.

Lg = log

Numerical Results
In this section, we numerically evaluate the per-
formance of the state-tracking DFE together with
state demapper, which is referred as STD. The
system under consideration is the one depicted
in Fig. [T, where o = 0.6. Other schemes are
also shown for comparison, including DFE, DFE
with bit-interleaving (random interleaving across
4 codewords), and DFE with precoding. In addi-
tion, performance in the AWGN channel (ISI-free)
is shown as a reference. The IEEE 802.3ca stan-
dard LDPC code is used with blocklength of 17664
bits and code rate 0.83. The decoder receives
LLRs and performs belief propagation (BP) with
6 iterations. For precoding scheme, the demap-
per transforms each HD into a fixed LLR!2. For
unitary signal power, the SNR is defined as 1/02.
We investigate the performance in three as-
pects: i) equalization; ii) improved demapping; iii)
combined equalization, demapping, and decod-
ing performance. The equalization effectiveness
is shown in Fig.[3(a), where the pre-FEC BER vs.
SNR is plotted. In the case of DFE with STD,
pre-FEC BER is computed by making hard deci-
sions on the LLRs in (7). For other schemes, bits
are obtained by demapping hard decision sym-
bols into bits. A gap over 1.1 dB is observed be-
tween the AWGN and the PR channel using DFE.
Since interleaving has no effect on reducing pre-
FEC BER, DFE with or without interleaving show
the same equalizing ability. At a BER of 0.02, STD
gains 0.17 dB for DFE due to the improved LLR
accuracy. Precoding appears to be the most ef-

fective strategy to reduce pre-FEC errors, which
gives an extra gain of 0.27 dB with respect to STD.

Fig. B[b) shows post-FEC BER vs. pre-FEC
BER. For soft-input FEC, the decoding ability
largely depends on the LLR accuracy. When
precoding is used, because the soft information
of de-precoded symbols is not available, quan-
tized LLRs are used and thus a significant per-
formance degradation is observed. By removing
error correlations, DFE with interleaving reduces
post-FEC BER by one order of magnitude com-
pared to DFE. Compared using interleaving, STD
can decrease the post-FEC BER by more than
three orders of magnitude (3.4 x 10~3), performing
closer to the AWGN scenario (x16 lower BER).

Finally, post-FEC BER vs. SNR is shown in
Fig. [Bfc). In combination of DEF, STD signif-
icantly outperforms interleaving and precoding
schemes. Compared to interleaving, STD gives
an extra gain of 0.76 dB for DFE at a BER of
10~5. Although DFE with precoding reduces pre-
FEC BER, its post-FEC performance is the worst
due to the LLR quantization. Finally, a gap of 1.57
dB between the DFE with STD scheme and the
AWGN performance can be observed.

Conclusions

We proposed a state-tracking DFE which recur-
sively infers the probability of biased states in par-
tial response channels such as those relevant in
high-speed PAM optical systems in data center in-
terconnects. The state probabilities are then used
in a state demapper to compute improved LLRs.
Numerical results show that by computing more
accurate LLRs, significant gains after LDPC de-
coding are achieved compared to standard DFE,
and DFE with interleaving or precoding. The pro-
posed scheme is an interesting option to improve
the performance of soft-decision coded data cen-
ter interconnects with limited increase in complex-
ity. The complexity of our proposed scheme can
be decreased further via a PDF lookup table. This
is left for future investigation.
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