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Abstract We propose a Fourier Neural Operator based fibre channel modelling method with both
time-domain and frequency-domain operators. The proposed method performs a high accuracy in the
WDM long-haul transmission system. ©2022 The Author(s)

Introduction
Optical fibre channel modelling is essential for
network design, optimization and estimation of
quality of transmission (QoT). To realize that,
many analytical methods such as Gaussian
noise (GN) model [1] are proposed, and a fast
evaluation of the signal to noise ratio (SNR) can
be achieved. However, the rich information in
the waveform cannot be provided by those
methods. On the other hand, although such
information can be obtained by solving the
nonlinear Schrödinger equation (NLSE) with the
split-step Fourier method (SSFM) [2], the
complexity can be quite high, which may be not
proper for a timely control of the optical network.

To solve the problems above, machine-
learning (ML)-based methods are widely studied
recently. A bidirectional long short-term memory
model-based method in [3] and a generative-
adversarial network-based in [4] are proposed
for waveform modelling. However, the
estimation accuracy of these works needs
further improvement. Some works such as the
physics-informed neural network (PINN) [5] are
proposed, which incorporate theoretical
knowledge into the design of ML algorithm to
improve interpretability [6]. However, their
applications are typically limited in pulse

modelling.
In this paper, we propose a waveform

modelling method based on Fourier neural
operator (FNO) [7], which contains both time-
domain and frequency-domain operators. The
structure is designed by theoretically analysing
the Manakov equation. To demonstrate the
accuracy, we perform extensive simulations.
The results show that the modelling error of the
proposed method can be less than 0.1 dB,
demonstrating the effectiveness of the method.

Principle
The Manakov equation can be written as [8]
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represents the two polarizations of the optical
signal. The two operators can be written as
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where � and � represent the propagation
distance and time, respectively. �2, � and � are
the chromatic dispersion (CD), attenuation and

Fig. 1: The structure of the SSFM-inspired optical fibre channel modelling using Fourier neural operator.
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nonlinear coefficient of the optical fibre. ℱ and
ℱ−1 represent Fourier transform and inverse
Fourier transform, respectively.
Eq. (2) and (3) show that the linear effect and

nonlinear effect can be solved in different
domains. However, most of the data-driven
methods only focus on time-domain processing.
In this work, we propose to apply FNO in
waveform modelling, which consists of a
frequency-domain operator and a time-domain
operator as shown in Fig. 1. The calculation of it
can be written as

� � + Δz, � = � � + ℛ � , (4)
where � and ℛ represent the time-domain
operator and the frequency-domain operator as

� � = � ∗ �, (5)
ℛ � = ���� � ∙ ��� � , (6)

For the input waveform, � performs a
convolution on it in time-domain. For the
frequency-domain operator ℛ , fast Fourier
transform (FFT), a fully connected layer, inverse
fast Fourier transform (IFFT) are performed
successively. The final output of FNO is
obtained by performing an activation operation �
on the summation.

The workflow of the proposed method is
detailed as below. The input waveform is first
mapped to a higher dimension channel space by
a fully connected layer. The outputs are then
processed by several FNO blocks. The outputs
are finally mapped back to four channels by a
fully connected layer and reconstructed to the
waveform after the propagation. The samples at
both ends are eliminated due to the circular
convolution caused by FFT. When the training is
done, the FNO can learn the complex
impairments in the fibre channel.

Simulation Setup

Fig. 2: The diagram of the simulation system.

The diagram of the simulation system is shown
in Fig. 2. The channel number of the
wavelength-division multiplexing (WDM) system
is set to 5. The symbol rate is 30GBaud per
channel and the channel spacing is 50GHz. The
symbol length is set to 16384. The modulation
format is dual polarization 16 QAM. A root
raised cosine (RRC) filter with a roll-off factor of
0.02 is used for pulse shaping at the transmitter.
The launch power ranges from -2 dBm to 2 dBm
with a step size of 1 dB. For the optical fibre
channel, the fibre type is standard single mode
fibre (SSMF). The span number is set from 1 to
10. Erbium-doped fibre amplifiers (EDFAs) with
a noise figure of 5 dB are adopted for
amplification. SSFM with a step size of 10 m is
applied to obtain the waveform after
transmission. The central channel is filtered out
at the receiver and CD compensation, matched
filter, down sampling and phase de-rotation are
used for signal processing. The SNR is
calculated in the end.

The proposed neural network contains four
FNOs. The input length of the network is 8192
samples. GELU, a high-performing activation

Fig. 3: (a) (b) The waveforms modelled by SSFM and FNO in time and frequency domain for 10 spans without ASE noise
with the launch power of 0 dBm. (c) (d) The details of the waveforms in (a) and (b). (e) The constellations of waveforms

modelled by SSFM and FNO for 800 km without ASE noise with launch power of -2, 0, 2 dBm.
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function [9] is utilized for nonlinear activation.
Adam is used for learning optimization. Based
on the structure, we trained two models for
different launch power ranges. One is for the -2
dBm to 0 dBm range, and the other is for the 0
dBm to 2 dBm range.

Results and discussions
To intuitively show the accuracy of the proposed
structure, we plot the waveforms modelled by
SSFM and FNO in time and frequency domain
in Fig. 3 (a) and (b), respectively, for 800 km
transmission with the launch power of 0 dBm.
Fig. 3 (c) and (d) show the details of the
waveforms, in which the results of SSFM and
FNO are almost perfectly overlapped. The
constellations at the receiver are shown in Fig. 3
(e), under the condition of transmitting over 800
km (10 spans) without ASE noise, and the
launch power is -2, 0, 2 dBm. There is little
difference between the constellations from
SSFM and FNO. In the enlarged view, the
constellations show a great deal of overlap. In
order to quantitatively measure the accuracy, we
defined the ��������� as

��������� = 1
������� (������)2�
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, (7)

where ������ and ����� represent the symbols
received from SSFM and FNO, and ������� is
the number of symbols. The ��������� is up to
40 dB in the simulation, which means the
estimation error is much smaller compared with
the signal power.

Fig. 4: The SNR without ASE noise for different launch

In the simulation, the SNR without ASE noise
is defined as:

������ = 10���10
����

����
, (8)

where ���� and ���� represent the signal power
and nonlinear noise power, respectively. The
������ estimation error is less than 0.1 dB for
80km (1 span). For long-haul transmission
simulation, the error is less than 0.45 dB for
800km (10 spans). The ������ for 5, 8 and 10
spans with different launch power from -2 to 2

dBm are plotted in Fig. 4. The curve of the
proposed method has the same trend as SSFM
that, 1-dB launch power increase incurs 2-dB
reduction of ������ [10], which is consistent with
the physical theory. The small estimation error
of ������ demonstrates the accuracy of the
proposed method.

Fig. 5: The SNR with ASE noise for different launch power
and transmission distance.

Next, the ASE noise induced by EDFA is
considered as the Gaussian noise. The updated
curves are plotted in Fig. 5, indicating that the
optimal launch power of both models is around -
1 dBm. All of the SNR estimation errors are less
than 0.2 dB in the simulation.

Conclusions
We proposed a Fourier neural operator based
optical channel modelling structure, with both
the time-domain and frequency-domain operator.
The model trained by the structure
demonstrates high accuracy in WDM long-haul
waveform modelling.
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