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Abstract We propose a reinforcement-learning-based network design and control algorithm that 

introduces reward variation dependent on maximum link utilization and link-adjacency embedding as 

input parameters. Up to 65%/20% capacity enhancement relative to first-fit and link-congestion-aware 

methods is verified. ©2022 The Authors 

Introduction 

Motivated by the continual steep growth in IP 

traffic volume around the world, a lot of effort is 

being devoted to enhancing network capacity 

with the introduction of higher link parallelism by 

spatial-division-multiplexing (SDM) [1-3] and the 

use of unused frequency bands in fibres [4,5]. 

Another trend is to pursue better network 

utilization by introducing flexible bandwidth 

assignment to paths by the ITU-T flexgrid [6-8] 

and dynamic path operations enabled by 

software-defined-networking (SDN) [9,10]. In 

order to combine these studies, we have to find 

a way to dynamically operate complex networks 

that have high spatial parallelism, fine granular 

frequency assignment, non-uniform 

transmission loss over multiple frequency bands, 

and impairments such as inter-core crosstalk at 

multi-core fibres. Emerging machine-learning 

(ML) techniques are expected to play a key role 

in developing efficient operation schemes of 

such future networks.   

The essential task of optical network 

operation is routing (including fibre and core 

selection), and frequency / spectrum assignment 

(RWA/RSA). The application of reinforcement 

learning (RL), a variant of ML, to RWA/RSA has 

recently commenced [11-15]. Several 

challenges have been elucidated to account for 

network-specific constraints such as connection 

latency [16], multiband allocation [17,18], and 

robustness guarantees [19]. We have 

substantially improved learning efficiency by 

splitting the original RWA/RSA into two compact 

sub-problems; RL-based routing for all 

wavelengths / frequencies and wavelength / 

frequency assignment considering route 

optimality. However, the network operation task 

is still complex necessitating the adequate 

numbers of agents and selection of the best one 

to sufficiently outperform conventional non-ML 

algorithms. 

In this paper, we propose a novel RL-based 

network design and control method inspired by 

the use of link congestion information in an 

efficient heuristic RWA/RSA algorithm. We start 

with our previous RL-based routing with fibre 

and core selection for each wavelength / 

frequency due to its efficiency given by the use 

of a single common neural network (NN) for all 

wavelengths / frequencies. Link-adjacency, 

which connects pairs of links by nodes, is newly 

embedded into the input vectors of the NN. 

Reward for each path setup is varied according 

the maximum utilization ratio of all links in the 

network. Our stepwise reward control 

corresponds to a link weighting technique, a 

heuristics based on congestion levels. Our 

advances enable stable and efficient learning 

with a small number of agents. Numerical 

simulations confirm that a given network can 

accommodate up to 65% and 20% more paths 

than the simple first-fit and the congestion-

aware heuristics, respectively. 

RL-based Network Design and Control 

Method that Considers State-Value 

Saturation and Link-Adjacency 

This paper considers transparent optical path 

networks whose optical paths are located on a 

uniformly spaced frequency grid. Although this 

assumption corresponds to ITU-T fixed grid 

networks, the discussion in this paper can be 

generalized to ITU-T flexible grid networks with 

aligned path accommodation by defining several 

regular grids with different spacing; each path is 

located on a regular frequency grid whose grid 

spacing equals the frequency bandwidth of the 

path. Aligned path accommodation, named 

semi-flexible grid, has been proven to matching 

the routing performance of the conventional 

flexible grid [20]. Two configurations have been 

evaluated. The first one is referred as episodic 

network design; the traffic demand is just a 

random sequence of path setup requests and 

the objective is to maximize the number of 
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successfully accommodated paths until the first 

path blocking. The other is dynamic network 

control; the traffic demand is represented by the 

continuous arrival of setup/teardown requests 

and the objective is to maximize the expected 

number of accommodated paths subject to a 

given path blocking ratio. 

The status of a network is represented by a 

vector whose components are the utilization 

ratios of all frequency indexes on all links. As 

the high-dimensionality of the vector degrades 

the efficiency of ML-based design and control, 

we proposed an efficient RL-based design and 

control algorithm that adopts a more compact 

state expression (See Fig. 1). A vector of the 

link utilization ratio of a frequency index is fed to 

a neural network approximating state-values for 

the frequency and the neural network is 

commonly used for all frequency indexes to 

accelerate the learning process [21]. This 

formulation has validated for semi-flexible grid 

networks [22]. However, these methods suffer 

from the state-value saturation issues explained 

below and need to be improved. In this paper, 

we introduce the following novel techniques to 

RL-based network design and control. 

Stepwise reward variation subject to 

maximum link utilization ratio 

Suppose that we have a system with state 𝑠 

and the state will be changed to 𝑠′  by action 

𝑎(𝑠, 𝑠′). An episode is a finite sequence of states 

and the goal is to maximize the total reward up 

to failure by selecting appropriate actions for all 

states. A TD(0)-based algorithm updates state-

value V at state s as  

𝑉(𝑠) ← 𝑉(𝑠) + 𝛼[𝑟(𝑠, 𝑠′) + 𝛾𝑉(𝑠′) − 𝑉(𝑠)] (1) 

where 𝑟(𝑠, 𝑠’) is the reward associated with the 

action, discount rate 𝛾 ∈ [0,1], and a sufficiently 

small 𝛼 ∈ [0,1]  [23]. Value 𝑉(𝑠)  will gradually 

converge to 𝛾𝑉(𝑠′) + 𝑟(𝑠, 𝑠′)  after sufficiently 

many updates for all possible states. 

In order to apply similar algorithms to optical 

network design and control, the objective will be 

the maximization of the number of paths 

successfully accommodated by the given 

network. Thus we could use 𝑟(𝑠, 𝑠′) = 1 for all 

s, s’ so that the total reward equals the number 

of accommodated paths. Then, in the inference 

stage, the TD(0)-based algorithm selects next 

actions so as to maximize the state-values of 

next states 𝑉(𝑠’) . The discount rate 0 < 𝛾 < 1 

contributes to stabilize training and enhances 

learning efficiency. On the other hand, the state-

values will saturate with the bound of 1/(1 − 𝛾)  

(See Fig. 2). As there exist numerous network 

states and the number of episodes is relatively 

limited, the estimation error of state-values will 

not be negligible. The non-negligible error and 

saturation in state-value estimation trigger the 

selection of non-optimal actions except at the 

end of the episode.  

Considering the essential limitation in RL, we 

propose a novel stepwise reward variation 

associated with maximum link utilization. Let the 

utilization ratio of a link be the ratio of the 

number of paths traversing the link to the 

maximum number of paths to be accommodated. 

The reward is written as 1 − 𝑢𝑚𝑎𝑥 where 𝑢𝑚𝑎𝑥 is 

the largest utilization ratio of all links in the 

network. This makes the state-value a pseudo 

linear function of the expected number of paths 

to be accommodated to the network.   

Link-adjacency embedding to input vectors 

In our previous work, a vector of utilization 

ratio of each frequency on all links is used to 

calculate the state-value and the set of vectors 

for all frequencies represents the exact status of 

the network (See Fig. 2). All the components in 

each vector are just arrayed in parallel; however, 

which pairs of links are bridged by nodes is 

strongly correlated with successful path 

accommodation and, as a result, with state-

values. We call such pairs of links adjacent link 

pairs. In this paper, we propose to use a vector 

where each component corresponds to an 

adjacent link pair and the value is the maximum 

of utilization ratios of the links in the pair (See 

Fig. 3). 

 

 
Fig. 1: Conventional and proposed composition of input of NN. Fig. 2: Comparison of conventional and proposed 

reward and state-value. 
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Due to space limitations, we briefly 

summarize our network design and control 

algorithm below. The algorithm calculates the 

state-values subject to given information on 

traffic distribution matrix 𝑇  whose component 

(𝑖, 𝑗) is the expected number of paths from node 

𝑖 to node 𝑗,  and then finds an appropriate route 

for each path setup request.  

Proposed Network Design and Control 

Algorithm 

Step 1. Initial setup stage 

Find all adjacent link pairs for the given 

network topology and fix the dimension of input 

vectors. Randomly generate episodes, 

sequences of path setup requests that follow 

given traffic distribution matrix 𝑇 . Conduct 

episodic network design for these episodes and 

train the common neural network for all 

frequency indexes by processing path setup 

requests and updating state-values with Eq.(1).  

Step 2. Design/control stage 

If a path teardown request arrives, remove 

the path immediately. If a path setup request 

arrives, in ascending order of frequency index, 

search for available routes for the selected 

frequency. If found, select a route that 

maximizes the state-value and set up the path. 

Otherwise, increase the wavelength index and 

search for available routes again. If no route is 

available, terminate (for episodic design) or 

block the request (for dynamic control). 

Numerical Simulations 

We verified the performance of the proposed 

algorithm on Spanish Telefónica network with 21 

nodes and 35 links (Fig. 4). In order to highlight 

the difference in routing between the proposal 

and conventional scheme, we assume that the 

number of wavelengths is one; i.e. no 

wavelength assignment. The maximum number 

of paths on each link is set to 20. A data-

centralized traffic distribution is assumed; traffic 

volume from/to a selected node is four times 

that between the other nodes. The selected 

node is called the data-centric node. Path setup 

requests are generated according to the 

distribution and episodic network designs are 

conducted; the metric for the comparison is the 

number of paths accommodated up to blocking. 

The dimension of the input vector 

representing the link utilization and adjacency is 

244. We adopt a three-layer NN to approximate 

the state-values in the broad parameter space. 

The numbers of neurons of input, hidden, and 

output layers are, respectively, 244, 32, and 1. 

The NN is trained with 400 episodes, where 

each episode starts from the empty state and 

ends with the first blocking. The number of 

agents / NNs is set to 16, much lower than is 

typical for typical ML-based methods. The step-

size of link utilization ratio is set to 10%.  

A congestion-aware resource allocation 

method is adopted as a conventional alternative. 

It adaptively controls the weight of links 

according to their utilization ratios, and finds the 

shortest route in terms of link weight. The results 

are normalized with the result of the basic first-fit 

route finding method under the same conditions. 

Figure 5 shows the average number of paths 

accommodated in 50 trials for different data-

centric node portions. The proposed method 

improves the number of paths accommodated 

by 6.5% (average) / 20% (maximum) and 43% / 

65% from the conventional congestion-aware 

and first-fit methods irrespective of data-centric 

node locations. The introduction of a secondary 

metric such as average latency could 

differentiate the proposal from the efficient 

conventional alternative.  

Conclusion 

In this paper, we have proposed a novel RL-

based network design and control method that 

adopts link-adjacency embedding and stepwise 

reward variation inspired by an efficient 

congestion-aware heuristic algorithm. Numerical 

simulations verified that the proposed method 

successfully outperformed simple first-fit and 

congestion-aware heuristic algorithms by up to 

65% and 20%, respectively.  

 
 

 

Fig. 3: Calculation of link-adjacency and 

composition of input to NN. 

Fig. 4: Spanish 

Telefónica Network. 

Fig. 5: Number of accommodated paths to  

a network for different data-centric node locations. 
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