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Abstract An iterative deep convolutional recurrent neural network is proposed to mitigate fiber non-
linearity with distributed compensation of polarization mode dispersion, demonstrating 1.3 dB Q-factor
gain over previous neural network based techniques for dual-polarized 960 km 32 Gbaud 64QAM trans-

mission. ©2022 The Author(s)

Introduction

Machine learning based methods have gained
considerable interest for nonlinearity compensa-
tion (NLC) in optical fiber communication sys-
tems. It has been demonstrated that learned NLC
methods are effective without apriori knowledge
of system parameters'-¢l. The proposed neu-
ral network (NN) models can be broadly divided
into two classes. Models such as multi-layer per-
ceptrons (MLPs)!!), bidirectional recurrent neural
networks (BiRNNSs)2l and convolutional BiRNNs
(CBRNNSs)#, which characterize the nonlinear ef-
fects with few layers and mitigate them in a single
module, can be classified as “lumped” NN mod-
els. Conversely, models which iteratively com-
pensate distortions for short sections of the link
in a piecemeal manner, such as learned digi-
tal backpropagation (LDBP)® and deep convo-
lutional neural networks (DCNNs)®®l can be clas-
sified as “iterative” NN models. Despite notable
progress in their development, comparison of var-
ious models has been restricted to their respec-
tive classleH,

Against this backdrop, in this paper we pro-
pose a deep convolutional recurrent neural net-
work (DCRNN), which advances the class of it-
erative learned NLC methods. In each step, the
DCRNN compensates linear distortions using a
complex valued convolutional layer followed by a
bidirectional recurrent layer which captures the in-
teraction between dispersion and nonlinearity to
perform NLC. We also extend the piecemeal pro-
cessing approach of DCRNN by incorporating po-
larization mode dispersion (PMD) compensation
in each iterative step. We refer to this extension
as the DCRNN-PMD model. We compare, for
the first time, the effectiveness of the proposed
models against both lumped and iterative neu-

ral networks in addition to deterministic methods
such as digital backpropagation (DBP). For this,
we account for the fact that different NN models
have varying potential for complexity reduction,
and we apply an iterative pruning and fine-tuning
approach based on the lottery ticket hypothesis
(LTH)® to operate the learned NLC methods at
their optimal complexity. We demonstrate that it-
erative NN models outperform their lumped coun-
terparts as well as deterministic methods includ-
ing DBP. Moreover, we show that the proposed
DCRNN-PMD model achieves the best perfor-
mance among all schemes.

Deep Convolutional Recurrent Neural Network
Lumped models explored in the literature employ
a combination of convolutional, recurrent, and
fully connected layers to characterize the accu-
mulated distortions from signal propagation along
the entire length of the fiber. They draw from
the ability of neural networks to learn complex
functions efficiently from data and the proven po-
tency of these topologies in applications of image
and speech processing. On the other hand,
iterative models perform equalization in multiple
repetitive steps, where each step can be con-
sidered equivalent to distortion compensation for
a small section of the fiber. Among determinis-
tic equalization methods, this notably applies to
DBP, which performs channel inversion using split
step Fourier method (SSFM). Hager et al. pro-
posed a learned approximation of DBP (LDBP)P!
which iteratively compensates linear and nonlin-
ear effects. However, LDBP does not consider
the interaction between dispersion and nonlinear-
ity which can degrade its performance when op-
erated with fewer coarser steps needed to keep
the complexity low. Recently, Sidelnikov et al. ad-
dressed this in the DCNNI® model by introduc-

Disclaimer: Preliminary paper, subject to publisher revision

European Conference on Optical Communication (ECOC) 2022 ©
Optica Publishing Group 2022



WelC.5

| %  convolution

} X multiplication (rotation)

2 x 2 complex valued
MIMO-FIR filter

a(Z)’ a(2)
p a()} a(1)
PO} JEO)

) d@

'
—a—
o ol o g
'
d@2)| d(©) !
a()) a(1) complex-valued |
real-valued DGD filter rotation matrix
a2))) a(2) with flipped coefficients
H symmetric complex-valued
0 CD filter

Fig. 1: (a) Architecture of the proposed DCRNN Model with N steps. (b) Decomposition of distributed linear filter.

ing an additional convolutional filter at the nonlin-
ear compensation step. However, this approach
is limited by the width of the filter and would in-
cur considerable computational complexity if we
try to cover the entire dispersion spread. In our
proposed DCRNN model, depicted in Fig.[Tal we
introduce a bidirectional recurrent neural network
(BiRNN) layer, which can account for the interac-
tion of dispersion with nonlinearity along the en-
tire delay spread at a low cost by processing the
symbols as a sequence and preserving informa-
tion from past (and future) symbols in its memory.
In each step of DCRNN, a complex-valued 1-D
linear convolutional layer performs chromatic dis-
persion (CD) compensation for each polarization.
The output of the i*" convolution step for the x-
polarization can be written as
l
(k) =Y ai(n)zi(k+n), (M
n=-—I

where (2{+1) is the width of the convolutional ker-
nel, z;(n) are the x-pol. inputs and a;(n) are train-
able complex valued weights at step i. A BiRNN
layer then processes the energies of dispersion
compensated symbols as a sequence:

hyi(k)=tanh(Wlhyi(k—1), |2 (k)2 |2¢ (k)[?])
i (k) = tanh (W i [y, s (k+1), |28 (k) |2, |2 (k) [2])
o7V (k) = (FFY w by ) (B) + (0] by i) (K),  (2)

where WF,i,WB,i,ff/y and bff/y are trainable
real-valued weights. Each iteration ends with the
application of the nonlinear compensation applied
as z;41(k) = 27 (k)e=7%(®). For PMD compen-
sation, we consider both a lumped and an iter-
ative approach to highlight the impact of piece-
meal compensation. For the base DCRNN model,
we use a single lumped 2-D complex-valued con-
volutional layer, akin to a 2x2 MIMO-FIR filter,
using output symbols of both polarizations from

the last iterative block. In the extended DCRNN-
PMD model, we modify the convolutional layer in
each iterative block for distributed compensation
of PMD. To reduce complexity, we simplify the lin-
ear compensation step based on the decomposi-
tion scheme proposed by Biitler et all?!, as de-
picted in Fig. using a short differential group
delay (DGD) filter followed by a rotation matrix.

Complexity Reduction Of Neural Networks

Fujisawa et al.'% illustrated complexity reduction
of NN-based NLC methods using weight prun-
ing. Since the performance of deep compos-
ite networks is irregularly sensitive to the num-
ber of weights pruned from different layers, we
use the automatic model compression (AMC)
techniquel™ to identify optimal sparsity factors
for each of the relatively complex layers of the
lumped models. For the iterative models with rel-
atively simple and repeating layers, we choose
the sparsity factors heuristically. Then, to ef-
fectively retrain the pruned model to compen-
sate for the removed weights, we apply LTHIE,
wherein we rewind the learning rate schedule be-
fore fine-tuning. Additionally, based on simple
physical considerations, in the DCRNN model, we
make the convolutional filters for CD compensa-
tion symmetrical. Also, to further reduce the num-
ber of trainable parameters, we use the same filter
coefficients for the CD filters of each polarization.

Numerical Results

We consider dual polarized 64-QAM transmis-
sion at 32 GBaud using root raised cosine (RRC)
pulses at a roll-off factor of 0.06. The optical link
consists of 12 spans of 80 km single mode fiber
using EDFA amplification with a noise figure of
4.5 dB at the end of each span. The fiber has at-
tenuation coefficient « = 0.21 dB/km, dispersion
coefficient 3, = —21.49 ps2/km, nonlinear coeffi-
cient v = 1.14 (W-km)" and DGD Dpyp = 0.1
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ps/vkm at A = 1552.93 nm. At the receiver, the
signal is coherently detected, sampled at 2 sam-
ples/symbol and matched filtered with an RRC fil-
ter. For lumped NN models, a frequency domain
CD equalizer is applied prior to the NN operation.

For our proposed DCRNN and DCRNN-PMD
models, we operate at 1 step per span (StPS) with
29 taps in the symmetric convolutional CD filter, 2
hidden units in each BiRNN layer, 19 taps in the
lumped PMD filter and 3 taps in each of the dis-
tributed DGD filters. We compare our results with
previous works on NN based NLC from iterative
and lumped paradigms. For iterative models, we
consider the DCNNI® model, also at 1-StPS, with
a 29 tap convolutional CD filter and a 19 tap con-
volutional filter for nonlinearity. For lumped com-
pensation, we consider a single hidden layer com-
plex valued MLPI with 192 hidden units, a Bidi-
rectional LSTM (BiLSTM)®! with 100 hidden units
and a Convolutional BiLSTM® with an additional
29 tap convolutional layer. For the BiLSTM, we
apply the low complexity center-oriented LSTM
(Co-LSTM)E! implementation including the sim-
plified mode and recycling mechanism. We train
each model using 2'® symbols for 10? epochs with
a batch size of 10* using the Adam optimizer and
a cosine annealed learning rate schedule. Perfor-
mance of the model is evaluated on a separate
set of 216 symbols. We also compare our results
with conventional DBP!2l at 1, 2 and 3 StPS pro-
cessed at 2 samples per symbol. Considering our
significant efforts towards optimizing the NN train-
ing process, it is only fair that we include several
key optimizations for DBP which have not been in-
corporated in several previous works on lumped
NN based NLC and hence may have caused
some unintentional bias. In our DBP implemen-
tation, we numerically optimize the nonlinear pa-
rameter for each launch power and use effective
step length accounting for signal attenuation. In
addition, we compensate for the remaining phase
rotation and PMD using an adaptive 2 x 2 LMS
based MIMO-FIR filter with 19 taps.

In Fig. we compare the Q-factor improve-
ment achieved by each NLC method over lin-
ear equalization at various stages of complexity
reduction. The rightmost point on each curve
represents the performance and complexity of
each model at the specifications described above.
LTH-based weight pruning is then applied to re-
duce complexity of each model and obtain per-
formance results at each complexity level. We
find that pruning a fully parameterized network
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Fig. 2: Performance vs. complexity comparison of various
NLC techniques with LTH-based NN complexity reduction.

delivers better performance-complexity trade-off
as compared to training a smaller network from
scratch. This effect is analogous to pre-training
as the pruned network serves as excellent ini-
tialization for the remaining weights. We find
that the lumped models require considerably high
complexity to keep up with DBP. Only convolu-
tional BILSTM is able to match the performance
of DBP at 2-StPS but it does so at roughly 5 times
the complexity even after pruning. lterative mod-
els on the other hand outperform DBP at signif-
icantly lower complexity. The proposed DCRNN
model outperforms linear compensation by 2.43
dB, 1-StPS DBP by 1.42 dB and next best learned
method (DCNN) by 0.87 dB. This illustrates the
improved capability of the DCRNN model to cap-
ture the interaction between dispersion and non-
linearity. Distributed PMD compensation using
the DCRNN-PMD model provides another 0.43 dB
Q-factor gain, clearly demonstrating the advan-
tage of iterative compensation.

Conclusions

The proposed DCRNN-PMD model is able to
outperform conventional DBP and previous NN
based equalizers in terms of both performance
and complexity. LTH based pruning is able to fur-
ther reduce DCRNN-PMD complexity by almost
50% with negligible performance loss. Lumped
NN models require considerably more parame-
ters to adequately characterise and mitigate non-
linear impairments. Iterative models take advan-
tage of simpler characterisation of nonlinear ef-
fects on a per step basis and perform well using
very few learnable parameters.
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