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Abstract We propose and present the first demonstration of a 3-D visible-light-positioning (VLP) 
utilizing Two-Stage-Neural-Network (TSNN) and Signal-Strength-Enhancement (SSE) to mitigate the 
light-non-overlapping-regions. In a practical room of 200×150×300 cm3, the average errors are <9 cm. 

Introduction 
The recent development of Internet-of-Things 
(IOT), wireless sensor networks, Virtual 
Reality/Augmented Reality (VR/AR) applications 
require high precision and accurate indoor 
positioning. Recently, visible light 
communication (VLC) and light fidelity (Li-Fi) 
systems have been commercialized [1-5], and 
these VLC systems are also potential 
candidates for indoor visible light positioning 
(VLP) [6]. Different VLP methods have been 
proposed, such as using proximity [7], time-of-
arrival (TOA)/time-difference-of-arrival (TDOA) 
[8], angle-of-arrival (AOA) [9], and received-
signal-strength (RSS) [10]. Among these VLP 
methods, RSS method is simple and accurate. 
As the received optical power has an inverse 
relationship with the distance between light 
emitting diode (LED) transmitter (Tx) and 
receiver (Rx), positioning can be realized by 
analyzing the received optical power from 
several LEDs with different identifier (ID) or 
carrier frequencies. Besides, to further reduce 
the positioning error, machine learning (ML) 
algorithms were utilized. Recently, a 3D VLP 
system using artificial neural network (ANN) and 
hybrid RSS/phase-differences-of-arrival (PDOA) 
was proposed having 12 cm average error; 
however, only simulation was provided [11]. 
Experimental 3D VLP systems using deep 
learning (DL) [12] and ANN [13] were also 
proposed; however, the positioing unit cells are 
small and impractical. 

In this work, we propose and present the first 
demonstration up to the authors' knowledge a 
3D RSS VLP system utilizing Two-Stage Neural 
Network (TSNN) with Signal-Strength-
Enhancement (SSE) to mitigate the light non-
overlapping regions caused by the finite field-of-

view (FOV) of LEDs at different height. The 
experiemental results show that in a practical 
room of 200 × 150 × 300 cm3, the average 
positioning error in z- and xy-directions are 8.80 
and 8.91 cm respectively. The errors in z- and 
xy-directions are reduced by 27.9% and 37.8% 
respectively when compared with the one-stage 
neural network without SSE. 

3D VLP TSNN Algorithm and Experiment 
Fig. 1(a) shows the photo and architecture of the 
proposed 3D VLP system. The positioning unit 
cell contains 4 LEDs (TOA® LDL030C), and 
each has an output power of 13 W. Each LED is 
encoded by a unique Manchester-coded ID at 
data rate of 3.125 kbit/s and upconverted to 
different specific RF carrier frequency (i.e. 47 
kHz, 59 kHz, 83 kHz, or 101 kHz) as also 
illustrated in Fig. 1(a). The odd frequencies used 
are to avoid harmonic frequency overlapping. 
The vertical distance of the room is ~ 300 cm. A 
photodiode (PD) is connected to a real-time-
oscilloscope (RTO, PicoTechnology® ps5432d) 
to collect real-time RSS data. They are mounted 
on an autonomous mobile robot (AMR). Fig. 1(b) 
shows the top-view of the VLP using cell; 
illustrating the training, testing and LED 
locations. In this practical experimental test-bed, 
the unit cell is not a perfect rectangle, and the 
size is about 155 cm × 200 cm. We collect the 
training and testing data from 3 layers at 
different heights, and the distances are 250, 225, 
and 200 cm away from the LED plane (i.e. 
ceiling). For each layer, we measure 112 
location points, of which 58 and 54 location 
points are for training and testing respectively. 
Each point is measured 20 times. Hence, the 
training set has 3480 data (58 locations × 20 
times × 3 layers), and the testing set has 3240 
data (54 locations × 20 times × 3 layers). 
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It is generally think that VLP performance will 
decrease when the distance between Tx and Rx 
increases due to the reduction of optical signal-
to-noise ratio (SNR). However, due to the finite 
FOV of LEDs, light non-overlapping areas are 
created as depicted in Fig. 2(a). These light non-
overlapping regions will produce high positioning 
error since no light is detected. Figs. 2(b) and (c) 
are the top-views of 200 and 225 cm Rx planes 
away from the LED plane respectively. We can 
observe that light non-overlapping region (i.e. 
gray area) is bigger at the 200 cm plane. 

Fig. 3(a) shows the flow diagram of TSNN 
model. In the first stage of the TSNN, the 4 RSS 
data and total RF signal strength are used as 
the input data. Then, data pre-processing, 
including Z-score normalization and extanding 
cross-term are performed. Hence, the 4 RSS 
data will become 14 RSS data with cross-terms 
[p1, p2, p3, p4, p3p4,  

p3, p4
2]. Then the data is 

divided into training and testing set based on 
their locations illustrated in Fig. 1(b). Fig. 3(b) 
shows the architecture of NN model 1. It has 5 
layers, including 1 input, 1 output and 3 hidden 
layers. There are 15 nodes at the input layer (i.e. 
labeled as input(,15)) representing the 14 RSS 
features and 1 total RF signal strength. The 
nodes of 3 hidden layers are 32, 16 and 8, 
respectively, and they are fully connected (FC). 
The activation function is Rectified Linear Unit 
(ReLU). The loss function and optimizer used 
are mean-square-error (MSE) and Adam 
respectively, and the training epochs is 400. The 
output layer in the first stage of the TSNN 
predicts the z coordinate, and we use dropout 
layer (rate = 0.3) to avoid over-fitting. After the 
prediction of the z coordinate, the proposed SSE 
(i.e. blue block in Fig. 3(a)) is executed. The 
detail of the SSE will be discussed later. The 
data will be proceeded by the second stage of 
the TSNN, with the NN model 2 illustrated in Fig. 
3(b). The nodes of input layer are 15, which 
consist of the 14 RSS features with cross-terms 
and the z coordinate from the first stage. The 
standard deviation in Gaussian noise layer is 
0.15, and the nodes of output layers are 2 which 
represent the predicted x and y coordinates. The 
remaining parameters of second stage TSNN 
model, such as loss function and optimizer are 
same as the first stage TSNN. 

Here, we discuss the proposed SSE. As 
mentioned above, at the 225 and 200 cm Rx 
planes, there are light non-overlapping regions. 
The SSE process is to compensate the light 
non-overlapping regions based on the ratio of 
other illuminated region, as shown in Eq. (1), 
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where hstd is the height of the standard layer, 
which is set at the 250 cm Rx plane since there 
is no light non-overlapping region, and htarget is 
the height of the target layer (i.e. 225 or 200 cm). 
θ is the divergence angle of the LED lamp, 
which is set at 32o based on our measurement. 
By multiplying the tanθ and the height, we can 
obtain the size of the illuminated region of the 
LED lamp at this height which is the 
denominator. For the numerator, we can 
calculate the extent to which the LED illuminated 

 
Fig. 1: (a) Photo of the VLP test-bed. PD: photo-
detector; AMR: autonomous mobile robot. (b) Top-
view of the VLP layer; illustrating the training, testing 
and LED locations. 

155 cm

208 cm

155 cm

202 cm

(b)

LED1 (47kHz)

LED3 (83kHz)

LED2 (59kHz)

LED4 (101kHz)

AMR

PD 

~300 cm

(a)

Fig. 2: (a) Schematic illustrating the LEDs, and light non-
overlapping regions. Top-view of the (b) 200 cm (c) 225 
cm Rx plane. 

LED1 LED2

LED3 LED4

250 cm
225 cm
200 cm

(a)

(c)(b)

Light Non‐
overlapping 

Region

Tu5.52 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



 

 

region is reduced due to the height. After 
knowing the reduced ratio at different heights, 
we will multiply an α to control the compensation 
level of the RSS value. 

Results and Discussion 
When one stage NN model is employed, the 
mean and standard deviation (SD) of errors for 
the testing data set in the vertical direction (z-
direction) are 12.20 and 9.92 cm, respectively. 
The mean and SD errors in the horizontal 
direction (xy-direction) are 14.33 and 8.92 cm, 
respectively. Figs. 4(a)-(c) show the average 
error distributions of the testing data set at 
different Rx planes. The red dots are the 
location of the testing points. The radius and 
color of circle is the average error in xy- and z-
directions respectively. We can observe that 
when the height increases, the average error in 
the xy-direction is larger. When the proposed 
TSNN model with SSE is employed, the mean 
and SD errors for the testing data set in z-
direction are 8.8 and 9.9 cm, respectively. The 
mean and SD errors and for xy-direction are 
8.91 and 5.81 cm, respectively. We can observe 
in Figs. 4(a)-(c) that when using the TSNN with 
SSE, the positioning error as well as the error 
variation can be significantly reduced. 
Comparing with the results using the one stage 

NN model, the errors in z- and xy-directions are 
reduced by 27.9% and 37.8% respectively. 

Fig. 5 show the cumulative distribution 
function (CDF) of the measured positioning error 
using different NN models. When one stage NN 
model is used, the positioning error of 90% of 
the experimental data is within 24.2 cm; while 
using the TSNN model without and with the SSE, 
the errors are within 21.7 cm and 15.3 cm 
respectively. Hence, at the CDF at 90% 
positioning error, the TSNN model with SSE can 
reduce the errors by 36.8% when compared with 
that in the one stage NN model. 

Conclusions 
We experimentally demonstrated a 3D VLP 
utilizing TSNN with SSE to mitigate the light 
non-overlapping regions. In a practical room of 
200 × 150 × 300 cm3, the average errors are <9 
cm. The errors in z- and xy-directions were 
reduced by 27.9% and 37.8% respectively when 
compared with the one-stage NN without SSE. 
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Fig. 4: Experimental average error distributions of the 
testing points using one stage NN and TSNN with SSE at 
(a)250 cm, (b)225 cm, (c)200 cm Rx planes. 

Fig. 3: (a) Flow diagram of the two stage NN model. 
(b) The structure of NN model 1&2 inside the TSNN. 
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Fig. 5: CDF of measured error using different NN models. 
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