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Abstract A low-power sparse-readout reservoir-computing based equalizer is proposed and evaluated 
by experiments on a 100-Gbps/λ PON testbed. Results demonstrate that it is feasible to greatly reduce 
the readout layer’s complexity while achieving a 29-dB power budget. Integrated photonics 
implementation issues are also discussed. ©2022 The Author(s) 

Introduction 
To meet the demand of emerging applications, 
such as fixed-mobile convergence for the fifth 
generation of mobile networks and beyond it, a 
100-Gbit/s/λ access network becomes the next 
priority for the passive optical network (PON) 
roadmap [1]. For PON systems with such high 
link speed, equalization would become one of the 
core techniques. The conventional neural 
networks (NN), such as fully-connected NN and 
recurrent NN (RNN), have been regarded as 
promising equalization tools to compensate for 
the transmission impairments including both 
linear and nonlinear distortions in the high-speed 
optical communication system [2]. But NN 
equalizers usually require an energy and time-
consuming training stage to work appropriately 
as they require iterative training operations (i.e. 
backpropagation) through the whole network.  

 Compared with the conventional NN models, 
recently the Reservoir-Computing (RC), which is 
more suitable to be implemented as optical 
neuromorphic hardware instead of digital 
application-specific integrated circuit (ASIC), was 
proposed as a solution to relieve the computing 
burden of the training stage. The reservoir layer 
can be left untrained, but only the weights of the 
readout layer need to be optimized by a simple 
regression method [3]-[12].  More importantly, a 
photonics-based hardware implementation of RC 
allows to fully exploit light’s advantages (high 
speeds and low power consumption) for 
computational purposes. For example, using 
silicon photonics technology, the efficiency and 
effectiveness of a passive swirl reservoir chip 
have been experimentally verified [5]-[8]. 

In terms of equalization performance, the RC-
based nonlinear equalizer has been investigated 
in a few literatures targeting short-reach optical 
communication applications. For example, in [9]-
[11], an RC equalizer composed of a random-
structured reservoir matrix and a full-readout 
layer with hundreds (~500) of readout 
connections was proposed and experimentally 
exploited on a 32-GBd OOK intensity-modulation 
and direct-detection (IMDD) short-reach optical 

system. To some extent, the RC neural network 
can be seen as a special type of RNN, but it has 
the potential of achieving comparable signal 
equalization performance with lower power 
consumption and faster training speed. 

However, it should be noticed that the 
conventional RC equalizer with a full-readout 
layer tends to require a large number of readout 
connections to guarantee its performance [9]-
[11]. When implemented in hardware, the large 
full-readout layer translates to many active 
components (e.g., optical modulators (OM)) 
which are both power-consuming and costly.  

In this paper, we firstly propose a sparse-
readout deterministic reservoir (SDR) based 
equalizer and evaluate its performance for PON 
applications. Using experimental data from a real 
100-Gbps/λ PAM4 IMDD PON testbed, we verify 
that it can achieve similar performance as the 
conventional full-readout RC equalizers but 
saves 22~59% readout layer connections. 
Finally, some considerations regarding 
integrated photonics implementations are also 
discussed. 

Architecture and Principles  
The nonlinear dynamic system that describes 

the evolution of the reservoir node’s state (xt) can 
be expressed as: 

𝑥𝑥𝑡𝑡 = α · 𝑓𝑓𝐴𝐴𝐴𝐴(𝑊𝑊𝑖𝑖𝑖𝑖 · 𝑢𝑢𝑡𝑡 + 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 · 𝑥𝑥𝑡𝑡−1) + (1 −
                 α) · 𝑥𝑥𝑡𝑡−1                                              (1) 
, where α is the leaking rate (set to 0.9), ut is the 
neurons’ input, and fAF denotes the nonlinear 
activation function (tanh). Win is the MxN input 

Fig. 1 A sparse-readout RC with a deterministic 
reservoir structure and a sparse readout layer 
implemented with OMs. 
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weight matrix where M is the input size and N is 
the number of reservoir nodes. Wres is the 
“reservoir matrix” whose elements represent the 
weights of the connections among the nodes. 
The weights of Wres can be constructed in a 
randomized manner as in literatures [9]-[11], 
which lacks implementation practicality. Here, for 
the simple hardware implementation purpose, a 
“deterministic reservoir with jumps” (DRJ) 
structure is employed by first connecting all 
nodes into a circle shape and then adding “jump 
connections” along the circle with a certain skip 
ratio [12]. The Win and Wres are assigned with 
fixed values, while the training process only 
applies to the equalizer’s readout layer. For an 
RC, this is typically accomplished by a Ridge 
linear regression operation aiming at minimizing 
the squared error of the loss function: 

    𝑚𝑚𝑚𝑚𝑚𝑚{||𝑌𝑌𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡 − 𝑋𝑋𝑊𝑊𝑜𝑜 ||22 + 𝜆𝜆||𝑊𝑊𝑜𝑜||22}       (2) 
, where the X, Ytarget, and λ represent the reservoir 
state vector, the target vector, and the ridge 
regularization factor, respectively. Based on the 
Ridge linear regression, the readout weights Wo 
are all non-zero [9]-[11].  

In this paper, we intend to reduce the 
complexity of the readout layer by sparsifying W0, 
which means W0 should contain as many 0s as 
possible after training. This can be done by cost 
function engineering, i.e., replacing Eq. (2) with 
the Eq. (3), which is known as an elastic-net 
linear regression method [13]. 

𝑚𝑚𝑚𝑚𝑚𝑚{||𝑌𝑌𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡 − 𝑋𝑋𝑊𝑊𝑜𝑜 ||22 + 𝜆𝜆 · 𝜌𝜌 · ||𝑊𝑊o||1 + 𝜆𝜆 ·
(1 − 𝜌𝜌) · ||𝑊𝑊𝑜𝑜||22}                      (3) 

In Eq. (3), ρ and λ are the elastic-net regression 
penalty parameter and regularization factor, 
respectively. After sufficient iterations, the 
readout weights Wo would be composed of zero 
(𝑊𝑊𝑟𝑟𝑖𝑖

𝑜𝑜 = 0) and non-zero ones (𝑊𝑊𝑗𝑗
𝑜𝑜 ≠ 0).  Thus, 

the readout layer connections corresponding to 
𝑊𝑊𝑟𝑟𝑖𝑖

𝑜𝑜 (denoted as red-dashed lines in Fig. 1) can 
be removed safely without influencing the 
computing result. In a real hardware chip, this 
means that fewer OMs are required.  

Experiment and Results 
To evaluate the equalizers’ performance, we 
conduct an experiment of 50-GBaud PAM4-
based 100-Gbps/λ IMDD PON using 25G-class 
optics in the O-band. The testbed is elaborated in 
detail in our previous work [2]. Here, the 
proposed SDR-based equalizer training is 
performed by PyTorch in offline processing. In 
the experiment, we used datasets generated by 
Mersenne-Twister based random sequences, 
which can get rid of the pattern effects of PRBS 
[14]. The length of the whole data set is 100,000 
symbols, including 40,000 and 60,000 symbols 
for training and test, respectively. The equalizers 
under investigation can be instantly trained in 
only a matter of seconds on a laptop CPU due to 
the simplicity of elastic-net linear regression.  

As for the reservoir layer, one jump 
connection is added for every 8 nodes along the 
outer circle. The jump-size can be a parameter 
that impacts the equalizer performance, which is 
not elaborated here due to the limited paper 

a) 

Fig. 2 a) BER & Sparsity against ρ and λ by our proposed SDR of [17i,(100,1)] @-18dBm ROP; b) BER against 
the ROP (proposed: solid vs. conventional: dotted); c) Sparsity of proposed SDR against the reservoir-size @-
18dBm ROP. 

b) c) 
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length and is left for future publication. Here, we 
focus more on the key hyperparameters of ρ and 
λ in the sparse-readout layer. The basic rule of 
the hyperparameters optimization is to seek a 
large sparsity under a BER constraint that 
satisfies the PON requirements. Assuming that 
the BER constraint should be “smaller than 1e-3 
@-18-dBm received optical power (ROP)”, using 
a Grid-Search method, the optimal (ρ, λ) of an 
SDR with 17-inputs-100-nodes-1-output ([17i, 
(100,1)]) would be (0.5,0.0001), as shown in Fig. 
2 a). In this case, a sparsity of 36% is obtained 
while the BER of 0.0009 satisfies the system 
constraint (marked with red circles in Fig. 2 a)).  

As shown in Fig. 2 b), all the proposed sparse-
readout SDR equalizers with 250, 100, and 50 
nodes achieve a similar BER performance as the 
conventional full-readout ones with the same 
reservoir size. The proposal can all achieve a 
good BER under the 7% hard-decision forward 
error correction (HD-FEC) limit of 3.8e-3 at -21-
dBm ROP. In our experiment, the launch power 
was 8-dBm, thus a 29-dB power budget has been 
achieved after 20-km fiber. Even with only 50 
nodes ([17i, (50,1)]), the SDR can achieve a 
slightly better BER performance than a 
conventional 500-node random-structured RC 
([17i, (500,1)]) with a full-readout layer, which 
demonstrates the effectiveness of the DRJ 
structure. Fig. 2 c) shows that, compared with the 
full-readout RC with the same reservoir structure 
and size, the sparsity of the proposed SDR grows 
almost linearly from 22% to 59% as the reservoir-
size increases from 50 to 250. This is true as 
there is much room for more exploitation of the 
sparsity when the reservoir-size in our evaluation 
increases. Also note that when the reservoir-size 
is almost squeezed to its limit of around 50, the 
proposed SDR can even obtain a good sparsity 
(22%) while maintaining the BER performance, 
thus can further reduce the whole complexity and 
related power consumption.  

Integrated Photonics Discussion 
To implement the proposed SDR equalizer, many 
photonics integration technology options can be 
considered [15]. From the high-level design 
perspective, depending on how the readout layer 
is implemented, Fig. 3 depicts two possible 
solutions: all-optical and hybrid optoelectronic. 
An all-optical readout layer (Fig. 3 a)), for 
example, could be a modulator array followed by 
a single photodetector (PD), which realizes 
weighted sum operation (𝑋𝑋 ∙ 𝑊𝑊𝑜𝑜) in the analog 
signal domain. For the optoelectronic design (Fig. 
3 b)), the reservoir’s outputs are converted to 
electrical signals and digitized individually, and 
then the weighted sum is done in the digital 
domain. Since the Wo is sparse, signal paths 
corresponding to 0s are switched off.  

Due to production variations and the difficulty 
of observing all states in the reservoir, some 
additional tricks are needed to calibrate the all-
optical readout weights [6]. If the hybrid 
optoelectronic solution is used, the weights can 
be tuned digitally with the additional flexibility of 
calibrating imperfections in the optics. But the 
energy consumption of the PD and analog-to-
digital converter (ADC) array may be problematic. 
Regarding energy efficiency, the all-optical option 
in Fig. 3 a) is preferred as it eliminates energy-
consuming devices including high-speed PDs, 
ADCs, and the digital processer. Thanks to the 
Wo sparsity, the energy consumption can be 
further saved.  

Another aspect of concern is the technology 
platform [15]. Silicon photonics is promising at 
integrating both PIC and EIC in a single die but 
suffers higher optical loss. The III-V platform is 
more versatile in supporting active components 
but needs advanced packaging with EIC. The 
low-loss silicon nitride is also an appealing option 
for optical RC, especially if hybrid integration with 
other materials becomes matured, such as non-
volatile optical memories [16] for weighting, etc.  

Conclusions 
We introduced a new low-power sparse-readout 
deterministic reservoir based equalizer for PON 
applications. Results verify that, applying the 
proposed equalizer to a 100-Gbps/λ signal after 
20-km transmission, a 29-dB power budget can 
be achieved. Compared with the conventional 
RC, a large sparsity (22~59%) can be achieved 
without sacrificing the BER performance. The 
related integrated photonics implementation 
issues are also discussed, and we believe that it 
would be very promising for future PON as well 
as other low-power and high-speed applications. 
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Fig. 3 Implementation options. (PIC: photonics 
integrated circuit; EIC: electrical integrated circuit; L2: 
layer 2 functions)  
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