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Abstract We investigate the robustness of our spectral data driven machine learning based QoT 

estimator by artificially noising the input features. The estimator shows superior robustness against 

feature changes compared to a non-spectral estimator. We validate its generalization ability and 

robustness on an unseen experimental dataset. ©2022 The Author(s) 

Introduction 

The emergence of flexible add-drop multiplexers 

and elastic optical networks resulted in more 

versatile but also more complex optical networks. 

Reasoned by the increased complexity, the 

monitoring of the performance is of increasing 

importance. Furthermore, the reduction of 

margins and the optimizing of network 

parameters enables more efficient optical 

networks. An accurate estimation of the quality of 

transmission (QoT) allows to maximize capacity 

and may enable full self-management of future 

networks. QoT estimation has been around for 

many years in the community, however, the 

emergence of performant artificial intelligence 

techniques renewed the interest to overcome the 

limitations of currently used QoT estimation tools, 

which are especially runtime, accuracy and 

vulnerability to uncertainties. 

Different approaches to evaluate the 

performance of lightpaths have been proposed, 

including analytical [1], machine learning-based 

techniques [2,3], and hybrid ones [4-6]. However, 

all these techniques require detailed information 

of the component and OLS parameters for the 

QoT estimation. In practice, these parameters 

are not always exactly known (e.g. real noise 

figures of EDFAs, exact fiber parameters, etc.). 

Such a scenario will be referred to as component 

parameter agnostic or ‘agnostic’ for short in the 

following. 

As the primary metric for optical link 

performance, the optical signal-to-noise ratio 

(OSNR) is used. The OSNR is closely connected 

to the bit-error-rate (BER), the Q-factor or the 

error-vector-magnitude (EVM). The knowledge of 

these parameters enables network operators to 

respond proactively to performance 

degradations. However, transceiver impairments 

limit their informative value since the transceiver 

characteristics are system specific. Therefore, 

the generalized OSNR (GOSNR) was defined as 

the required OSNR to achieve the same BER as 

in a back-to-back (B2B) scenario. 

We have recently shown the advantage of the 

inclusion of spectral features extracted from 

sparsely deployed optical spectrum analyzers 

over traditional (ML-based) QoT-estimators in 

exact component parameter agnostic scenarios 

[7]. However, the proposed long short-term 

memory (LSTM) and neural network (NN) hybrid 

structure for the regression task was not 

analyzed regarding its ability to generalize to 

unseen scenarios or its robustness to parameter 

fluctuations.  

In this paper, we investigate the 

generalization capability of the proposed QoT 

estimator by varying the values of the most 

important features by deliberately adding noise-

like parameter variations from a normal 

distribution with a feature specific standard 

deviation. By this we can show the impact of each 

feature on the GOSNR prediction and evaluate, 

which feature has to be most accurate for the 

estimation. Furthermore, the generalizability of 

the purely simulatively trained estimator is 

verified by testing it on an (unseen) experimental 

dataset obtained from a recirculating loop setup. 

Spectral Data based QoT Estimator 

The QoT estimator based on LSTM and NN is 

trained with a simulation dataset obtained 

through solving the nonlinear equations using the 

split-step Fourier method for the propagation of 

the light through the fiber. The dataset consists of 

four different feature vectors. The transmission-

related features are composed of a vector 𝑇⃗ =
[𝑀𝐹, 𝑃𝐿 , Δ𝑓, 𝑏, 𝐿] with modulation format (𝑀𝐹), 

launch power per channel (𝑃𝐿), channel spacing 

( Δ𝑓), baudrate (𝑏), the total link length (𝐿) and the 

length vector 𝐿⃗ = [𝐿𝑁𝑆−𝑘,𝑁𝑆−(𝑘−1), … ,  𝐿𝑁𝑆−1,𝑁𝑆
] 

with 𝑁𝑆 being the total number of spans and k 

representing the number of intermediate nodes. 

Therefore, 𝐿⃗  is built of the lengths between the 

intermediate nodes and the end of the link. The 

features obtained from the spectrum are the 

vector 𝐴 = [𝐴𝑁𝑆−𝑘,𝑁𝑆−(𝑘−1), … ,  𝐴𝑁𝑆−1,𝑁𝑆
] that 

contains the area under the envelope of the 

power spectral density (PSD) obtained by the 
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sparsely deployed OSAs, i.e. the total signal 

power and the vector 𝐻⃗⃗ = [𝐻𝑐1 , … , 𝐻𝑐11
] which is 

composed of the heights of the PSD of the 

considered channels. The target of the estimator 

is the GOSNR, which is calculated from the 

constellation points. The training dataset 

contains 15∙106 feature sets, generated from the 

results of simulations of a dual-polarization 

transmission system with a huge variety of 

feature combinations regarding e.g. modulation 

format, channel assignments and launch powers. 

For more detailed information refer to our 

previous work [7]. 

Generalization Investigation 

An ML-based estimator is generalizable and 

robust, if the estimator can reliably react to 

variations in the input features without major 

reduction in accuracy for an unseen dataset [8]. 

To investigate the impact of the QoT estimator, it 

is important to define, which parameters could be 

changing in another dataset, especially if an 

agnostic network scenario is considered in which 

for example the exact fiber lengths are not 

known. We consider the total link length 𝐿, the 

length vector 𝐿⃗ , the power vector 𝐴  and the vector 

𝐻⃗⃗  as possible features that may change in 

another dataset. Therefore, we deliberately vary 

the values of every feature contained in the 

vectors according to Gaussian distributed 

random processes with standard deviations of 

10% of the assumed exact values. For changes 

in the length vector 𝐿⃗ , the total link length 𝐿 is 

adjusted accordingly. For each parameter, the 

prediction is repeated 1000 times to investigate 

the specific impact on the GOSNR prediction. 

Furthermore, another estimator is trained without 

incorporating the spectral features (𝐴  and 𝐻⃗⃗ ) for 

comparison. 

To validate the generalization performance, 

the estimator is tested on an unseen dataset 

obtained from experiments. The experimental 

setup is depicted in Fig. 1. The digital signal 

processing (DSP) is based on Matlab routines 

and is executed offline. At the transmitter side, for 

the generation of the channel under test (CUT), a 

PRBS of length 217-1 is generated and mapped 

to QPSK or 16-QAM. The 32 Gbd signal is 

upsampled to the sample rate of the DAC (88 

GSa/s) followed by a pulse shaping using a root-

raised cosine filter with a roll-off factor of 0.2. The 

digital-to-analog conversion is done by an 

arbitrary waveform generator (AWG) running at 

88 GSa/s. An external laser with a wavelength of 

𝜆CUT = 1550.004 nm in combination with a DP-IQ 

modulator that is driven by the DAC via 4 driver 

amplifiers generates the CUT. The other WDM 

channels (loaders) are generated using a 

programmable wavelength-shaping filter (II-VI 

WS4000A) with an ASE noise source as input 

source. The waveshaper has a periodically 

repeating filter bandwidth of 37.5 GHz 

corresponding to the channel spacing and is 

configured to level all channels at the output. The 

loaders and the CUT are combined using a 3 dB-

coupler before being amplified using an EDFA. 

The output of the EDFA is then fed into the 

recirculating loop. The loop contains a 

polarization scrambler at the beginning followed 

by 3 spans. A span is composed of an EDFA to 

compensate the fiber losses, a variable optical 

attenuator (VOA) to set the desired launch 

powers and a standard single mode fiber (SSMF) 

with a length of 88.4 km. After one circulation the 

signal is flattened using another wavelength-

shaping filter to compensate the EDFA gain 

characteristics. At the receiver side, the signal is 

first amplified by another EDFA and afterwards 

the CUT is filtered out before coherent reception. 

The analog-to-digital conversion is performed by 

an oscilloscope with 80 GSa/s. In the offline 

Fig. 1: Experimental transmission system setup and DSP with an exemplary spectrum with all active loaders. PRBS: pseudo-random 

bit sequence, QAM: quadrature amplitude modulation, RC: root cosine, DAC: digital-to-analog converter, DP: dual-polarization, WSS: 

WaveShaper, EDFA: Erbium-doped fiber amplifier, VOA: variable optical attenuator, SSMF: standard single mode fiber, PS: 

polarization scrambler, CoRx: coherent receiver, ADC: analog-to-digital converter. 
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receiver DSP, the signal is compensated for 

possible IQ-imbalances before upsampling to 

twice the baudrate. After the constant amplitude 

zero autocorrelation (CAZAC) sequence-based 

synchronization, the signal is matched filtered 

and equalized using a 2x2 MIMO-equalizer 

followed by the phase recovery. Afterwards, a 

4x4 MIMO-equalizer compensates for the 

polarization-induced interferences. At the end of 

the DSP chain, the GOSNR is calculated using 

pre-measured look up tables of relations of 

OSNR and Q-factor for the considered 

configurations. The measurements include DP-

QPSK and DP-16-QAM modulated WDM signals 

over 3 to 12 spans of SSMF with different channel 

assignments of 9 channels (adding in 

neighboring pairs of two around the COI) in a 

37.5 GHz ITU-grid operating at 32 Gbaud. 

Results and Discussion 

The results of the generalization investigation are 

shown in Fig. 2. It can be seen that the length 

vector 𝐿⃗  and the total link length 𝐿 have the 

strongest impact on the GOSNR estimation 

indicated by the larger error bars, followed by the 

channel powers extracted from the spectrum. 

Varying the total power by its standard deviation 

results in only small deviations of the estimator. 

This is due to the fact that most information about 

the total power is already included in the channel 

powers. The robustness of the estimator is lower 

in the lower GOSNR regime at 10 dB due to the 

lower number of high distance transmissions in 

the dataset. However, there are no significant 

outliers visible in the graphs. Furthermore, the 

estimator trained without spectral features shows 

much higher deviations when varying 𝐿⃗ . Thus, 

our spectral data driven estimator shows a 

significantly higher robustness than an estimator 

trained without spectral features. 

Using the estimator, which has been trained 

by idealized simulation only, on the (unseen) 

experimental dataset results in an overall good 

estimation with an R2-score of 0.86 and a mean 

absolute error (MAE) of 0.76 dB. In Fig. 3, the 

reference and 4 different scenarios for the 

estimation can be seen. The smaller the error 

bars are, the more accurate is the estimation. For 

lower distances, the impact of a change of the 

standard deviation is larger than for higher 

distances, since the BER increases strongly with 

lower GOSNR. Above 1000 km, the deviations in 

the experimental are larger than before and so 

are the deviations in the estimations due to low 

GOSNR values in the experimental dataset. 

Conclusion 

We investigated the generalization ability and 

robustness to parameter fluctuations of our QoT 

estimator based on an LSTM/NN-hybrid 

implementation trained on simulative data by 

artificially noising the input features. The 

influence of the transmission lengths and the 

channel powers on the accuracy turned out to be 

larger than that of the total power. For the 

investigated scenarios, the estimator trained with 

only simulative data achieved a good 

performance on an (unseen) experimentally 

recorded dataset with an R2-score of 0.86 and an 

MAE of 0.76 dB. Overall, the estimator convinces 

with its ability to generalize by using spectral data 

obtained from sparsely deployed OSAs, 

especially in comparison to the non-spectral 

case.  
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Fig. 2: Impact of varying the feature vectors length 𝑳⃗⃗ , total 

power 𝑨⃗⃗  and channel power 𝑯⃗⃗⃗  with their corresponding 

standard deviations on the estimator trained on spectral data 

(blue, orange, green) and on the estimator trained without 

spectral data (red) for DP-QPSK. 

Fig. 3: BER over length for 5 different scenarios; grey: 

distribution of BER in the experimental dataset; blue: 

estimation of the QoT-E on the dataset; green: 2% change in 

the standard deviation (std) of the dataset; yellow: 5% change 

in the std of the dataset; red: 10% change in the std of the 

dataset. 

Tu5.41 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



References 

[1] P. Poggiolini, "The GN model of non-linear propagation 
in uncompensated coherent optical systems.", in IEEE J. 
Lightw. Technol., vol. 30.24, pp. 3857-3879, 2012, DOI: 
10.1109/JLT.2012.2217729. 

[2] C. Rottondi, et al., "Machine-learning method for quality 
of transmission prediction of unestablished lightpaths.", 
in in IEEE/OSA J. Opt. Commn. Netw, vol. 10.2, pp. 
A286-A297, 2018, DOI: 10.1364/JOCN.10.00A286. 

[3] S. Aladin, et al., "Quality of transmission estimation and 
short-term performance forecast of lightpaths.", in IEEE 
J. Lightw. Technol, vol. 38.10, pp. 2807-2814, 2020, 
DOI: 10.1109/JLT.2020.2975179. 

[4] I. Sartzetakis, K. K. Christodoulopoulos, E. M. 
Varvarigos, "Accurate quality of transmission estimation 
with machine learning.", in IEEE/OSA J. Opt. Commn. 
Netw., vol. 11.3, pp. 140-150, 2019, DOI: 
10.1364/JOCN.11.000140. 

[5] E. Seve, J. Pesic, Y. Pointurier, "Associating machine-
learning and analytical models for quality of transmission 
estimation: combining the best of both worlds.", in 
IEEE/OSA J. Opt. Commn. Netw., vol. 13.6, C21-C30, 
2021, DOI: 10.1364/JOCN.411979. 

[6] J. Müller, et al., "Estimating Quality of Transmission in a 
Live Production Network using Machine Learning.", in 
Optical Fiber Communication Conference, 2021. 

[7] L. E. Kruse, S. Kühl, S. Pachnicke, "Exact component 
parameter agnostic QoT estimation using spectral data-
driven LSTM in optical networks.", in Optical Fiber 
Communication Conference, 2022, DOI: 
10.1364/OFC.2022.Th1C.1. 

[8] C. Szegedy, et al., “Intriguing properties of neural 
networks.”, arXiv preprint arXiv:1312.6199, 2013, DOI:  
https://doi.org/10.48550/arXiv.1312.6199. 

 

Tu5.41 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

https://doi.org/10.1109/JLT.2012.2217729
https://doi.org/10.1364/JOCN.10.00A286
https://doi.org/10.1109/JLT.2020.2975179
https://doi.org/10.1364/JOCN.11.000140
https://doi.org/10.1364/JOCN.411979
https://doi.org/10.1364/OFC.2022.Th1C.1
file:///C:/Users/Lars/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/R8B9YPIQ/10.48550/arXiv.1312.6199
file:///C:/Users/Lars/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/R8B9YPIQ/10.48550/arXiv.1312.6199

