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Abstract We experimentally demonstrated 800-Gbit/s/carrier WDM coherent transmission over 2,400-

km based on 100-GBd truncated PS-64QAM utilizing 75%-sparsity pruning DNN-based nonlinear 

equalization. Results show that our pruning DNN-NLE with 24%-lower complexity outperforms Volterra 

NLE by 20% reach improvement. ©2022 The Author(s) 

Introduction 

The demand for larger capacity, higher rate and 

longer reach of optical fiber communication 

networks has become more and more urgent in 

the last few years. Long-haul coherent 

transmission above 800 Gb/s/carrier will be a 

prospective target for next generation optical 

fiber communication[1]. However, the nonlinear 

impairment has become a key limiting factor of 

transmission distance. With the development of 

machine learning, nonlinear equalization (NLE) 

based on deep neural network (DNN) has been 

applied to nonlinear compensation for fiber optic 

communication systems[2]–[4], and pruning is 

introduced to save complexity[5]–[7]. In our 

previously published work, we  realized 5×800-

Gbit/s WDM coherent transmission over 2,000 

km based on truncated probabilistic shaped (TPS) 

64QAM by utilizing 2-order MIMO Volterra NLE[1].  

In this paper, we innovatively proposed the first 

demonstration of separated pruning DNN-based 

NLE (DNN-NLE) to replace MIMO Volterra NLE. 

Furthermore, we used pruning technique to 

reduce the computational complexity of DNN-

NLE and finally achieved separated pruning 

DNN-NLE with 24%-lower complexity than VNLE. 

The transmission distance of 800-Gbit/s/carrier 
signal is extended by 20% at the same time. 

Experimental setup 

Our experimental setups for five-channel WDM 

TPS-64QAM signal at 100-Gbaud are illustrated 

in Fig. 1. At the Tx side, the light source at 

1553.125-nm from an ECL with 100 kHz linewidth 

is fed into the I/Q modulator with 30-GHz 3-dB 

bandwidth, which is driven by the TPS-64QAM 

signal from two high-speed DACs with 35-GHz 

bandwidth and 100-GSa/s sampling rate. The 

entropy of TPS-64QAM is 5 bit/symbol. We have 

five sub-channels with 125-GHz spacing, 

including one measured channel (Ch. 3) and four 

adjacent loading channels (Ch. 1, 2, 4 and 5). 

After polarization multiplexing, five sub-channels 

are combined by an optical coupler. Then, the 

WDM signals are launched into a cyclic ULAF 

loop, consisting of four spans of 100-km ULAF 

amplified by a backward-pumped Raman 

amplifier. The optical spectra of WDM signals 

before and after 2,000-km ULA fiber transmission 

at 0.5-nm resolution are illustrated in Fig. 2 (a) 
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Fig. 1: Experimental setup of 5-channel WDM transmission based on 100-Gbaud PM TPS-64QAM. 
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and (b), respectively. After ULAF transmission, 

we utilize a tunable optical filter (TOF) to select 

the desired sub-channel before it is detected by 

a coherent receiver[1]. Afterwards, a digital 

oscilloscope (OSC) with 160-GSa/s sampling-

rate and 65-GHz bandwidth is used to realize the 

digitization and sampling of received signals. 
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Fig. 2: The optical spectra of 5-channel WDM TPS-64QAM 

signals (a) before and (b) after 2,000-km ULAF transmission. 

Comparison of MIMO Volterrra and DNN-

based Nonlinear Equalization 

The beginning steps of our DSP scheme are the 

same as those of common coherent transmission. 

We implemented NLE as the last step of the DSP 

after carrier phase estimation (CPE). We have 

two NLE schemes, which are MIMO Volterra[1] 

and DNN-based NLEs. The I/Q separated DNN-

NLE is shown in Fig. 3. It’s proved that separated 

NNEs can be better trained than a single NNE 

that adopts both I/Q signals when I/Q imbalance 

is well-solved by former DSP steps[8].  

The parameters configuration of the NLEs is 

shown in Tab. 1. The linear memory length M1 

and nonlinear memory lengths M2 of Volterra 

NLE are 149 and 99, respectively. For the 

separated DNN-NLE scheme, we used four 

independent DNNs, corresponding to the I/Q 

components of two polarizations. The memory 

length of DNN is 80. The number of units in first 

and second hidden layers is 80 and 60, 

respectively. Considering the uneven distribution 

of the signal and soft-decision LDPC, we adopted 

mean-square error (MSE) as loss function. Our 

experimental results of BER versus OSNR and 

transmission distance for subchannel-3 WDM 

TPS-64QAM signal are illustrated in Fig. 4 and 5, 

respectively. 
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Fig. 3: Principle of separated DNN-NLE. 
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Fig. 4: BER versus OSNR under BtB condition. 
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Fig. 5: BER versus ULAF transmission distance. 

In order to make the nonlinear compensation 

performance of NLEs more clear, we added a 1-

order MIMO Volterra scheme. Compared with the 

1-order Volterra NLE, the 2-order Volterra NLE 

can bring around 0.7-dB sensitivity gain, and the 

transmission distance for TPS-64QAM signal can 

be extended from 1,600 km to 2,000 km when 

considering 3.8×10-2 LDPC threshold with 25% 

overhead[1]. When changing the Volterra NLE to 

DNN-NLE, we can obtain another 0.7-dB 

sensitivity gain and the transmission distance can 

be further improved to 2,400 km.  

However, the multiply-accumulate operation 

(MACC) per symbol of DNN-NLE is around 3 

times that of Volterra NLE. Hence, we utilized 

pruning technique to reduce the complexity. 

Tab. 1: Computational complexity of NLE schemes. 

NLEs Parameters MACC per symbol 

Volterra 

NLE 

M1=149 

M2=99 

=4(M2
2+M2)+8M1 

=40,792 

DNN-

NLE 

N=80 

H1=80 

H2=60 

=4(2H1(2N+1)+H1H2+H2) 

=122,480 

Pruning 

DNN-

NLE 

N=80 

H1=80 

H2=60 

Sparsity=75% 

=122,480 × 25% 

=30,620 
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Pruning DNN-based Nonlinear Equalization 

It’s shown that there are a large number of 

redundant neurons and weights in the neural 

network model, and the weights that participate 

in the main calculation and affect the final result 

only account for 5-10% of the total [9]. In long haul 

optical transmission, the system requires high 

accuracy. Variation in BER performance is critical 

for FEC. Therefore, it is important to control 

performance decay during pruning. Considering 

one-shot pruning can be strongly affected by 

noise, we pruned the model iteratively. The 

scheme of the pruning process is shown in Fig. 6. 
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Fig. 6: Principle of pruning DNN-NLE. 

After normal training (until convergence), we 

iteratively pruned the separated NN models and 

kept training the models. The sparsity of the 

models increased 5% and the models are trained 

and evaluated for the next iteration. The optimal 

pruning model should be picked out according to 

the performances.  
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Fig. 7: BER versus pruning sparsity for TPS-64QAM signal 

after 1,200-km transmission. 

By equalizing signals in 1,200-km transmission, 

the BER performances in pruning process are 

recorded, and the results are shown in Fig.7. We 

obtained a pruning scheme with 75% sparsity 

that combines low-complexity and acceptable 

performance. The pruning scheme is then used 

to reduce the complexity of equalizing signals in 

400-2,400-km transmission.  
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Fig. 8: BER versus ULAF transmission distance. 

The BER results versus transmission distance 

for pruning DNN is shown in Fig. 8. When the 

pruning sparsity is 75%, the BER of TPS-64QAM 

signal after 2,400-km transmission is still lower 

than 3.8×10-2 threshold. In other words, when the 

complexity of DNN-NLE is reduced by 75%, the 

transmission distance of 800-Gbit/s/carrier TPS-

64QAM signal can still reach 2,400 km. At this 

time, the complexity of pruning DNN-NLE is 

around 24% lower than the Volterra NLE. 

Conclusions 

We experimentally demonstrated 800-

Gbit/s/carrier WDM coherent transmission over 

2,400-km based on 100-GBd truncated PS-

64QAM utilizing 75%-sparsity pruning DNN-

based nonlinear equalization.  

We compared separated DNN-NLE with 2-

order MIMO Volterra NLE. When changing the 

Volterra NLE to DNN-NLE, we can obtain around 

0.7-dB sensitivity gain and the transmission 

distance can be improved from 2,000 km to 2,400 

km. We also utilized pruning DNN-NLE to reduce 

the computational complexity. Our 75%-sparsity 

pruning DNN-NLE with 24%-lower complexity 

outperforms Volterra NLE by 20% reach 

improvement. 
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