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Abstract A new hard-decision FEC scheme, suitable for high-throughput applications, is proposed that 

is based on zipper framework and is able to reduce the required memory and latency significantly 

compared to the conventional zipper codes.    

Introduction 

High-speed optical transceivers operating at 800 

Gbit/s and beyond have recently become 

commercially available. As in previous proposals 

(e.g., ITU-T G.709.2/Y.1331.2[1] and 400ZR[2]), 

forward error correction (FEC) is an essential 

component of these optical communication 

systems, enabling high-rate transmission. Due to 

complexity constraints at high data throughputs, 

FEC solutions with hard-decision decoding are 

preferred. 

Staircase codes[3] are spatially-coupled FEC 

schemes based on algebraic BCH codes that 

have been included in several 

recommendations[1][2].  With iterative hard-

decision decoding, staircase codes can perform 

very close to the capacity of the binary symmetric 

channel (BSC) with low decoding complexity. Not 

only these hard-decision FEC schemes are 

attractive as stand-alone FEC solutions in optical 

communications, but also in concatenated coded 

modulation schemes with bit interleaved coded 

modulation (BICM) and multilevel coding 

(MLC)[4][5]. In a concatenated scheme, typically 

an inner soft-decision code is concatenated with 

an outer hard-decision outer code. The inner 

code is tasked with reducing the bit error rate 

(BER) to a certain level, after which the outer 

code takes over and corrects the remaining 
errors down to below 10−15.   

Typically in BICM and MLC schemes, the best 

performance is obtained when the outer code 

overhead is ultra-low (around 1.5-2.5%). 

However, the required memory at the decoder 

grows rapidly as the overhead decreases. This 

issue was partially addressed with the 

introduction of zipper codes[6].  However, in many 

high-throughput practical applications, even the 

required memory of zipper codes is still too high 

and results in unacceptable latency. In this paper, 

we propose a FEC scheme based on the zipper 

framework that can operate with a decoding 

memory up to 13 times less than the conventional 

zipper frameworks and up to 26 times less than 

the staircase codes at low overheads. Proposed 

codes can operate within 0.6dB gap to the BSC 

channel capacity.    

Zipper Code Framework 

A zipper code framework is described by its three 

main components: a component code, a zipping 

pair, and an interleaver map. In the original 
work[4], a BCH code 𝐶 of length 𝑛, dimenssion 𝑘, 

and  correction capability 𝑡 was considered as the 

component code. The zipper buffer is an infinite 

sequence of BCH codewords 𝐶0, 𝐶1, 𝐶2 … that 

form a semi-infinite matrix with 𝑛 columns. The 

buffer is divided into two sets: virtual buffer, 𝐴, 

and real buffer, 𝐵. Sets 𝐴 and 𝐵 are called a 

zipping pair (𝐴, 𝐵). The bits of the virtual set are 

a direct copy of the bits in the real buffer through 
the interleaver map, 𝜑. For practical purposes, 

the interleaver map is considered to be bijective, 
periodic and causal[6]. Let 𝑚𝑖 = |𝐴𝑖|  denote the 

length of the 𝑖-th row of the virtual set. The length 

of the corresponding real row therefore is 𝑛 − 𝑚𝑖. 

Generally, 𝑚𝑖 ’s for different rows can be different 

but we must have 𝑚𝑖+𝜗 = 𝑚𝑖, where 𝜗 > 0 is the 

interleaver map period. It was shown that a 

diagonal interleaver map with 𝑚𝑖 = 𝑚 =
𝑛

2
 in all 

rows, is able to provide very good performance[6]. 

Note that each bit is protected by 2 codes, once 

in the real buffer and once in the virtual buffer, but 

only the bits of the real buffer are transmitted over 

the communication channel.  

A zipper code is decoded using a sliding-
window decoding algorithm where 𝑀 consecutive 

received rows are decoded iteratively using an 

algebraic BCH decoder[6]. This iterative decoder 

is invoked whenever a new row is received. In 

practice, to have a sharp waterfall performance, 
the ratio 𝑀/𝑚 should be large enough. To reduce 

the decoding complexity, the decoding 
subroutine is performed after receiving each 𝜇 

rows, called a chunk. At the arrival of each chunk, 

the decoder outputs the oldest chunk within the 

window. In order to determine the decoder 

memory size for the window decoder, we first 
need to define a new parameter called maximum 

lookback denoted by 𝜆. This parameter denotes 

the maximum number of older rows required in 

filling the virtual bits of each row. At the decoder, 
there exist 𝑀𝑚 bits within the window decoder 

and an additional 𝜆𝑚 older bits have to be kept to 
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perform the decoding. Thus, the total decoder 
memory size is (𝜆 + 𝑀) × 𝑚. As an example, the 

decoder memory sizes of a staircase code and a 
delayed diagonal zipper code is (𝑚 + 𝑀) × 𝑚 

and (𝑚/2 + 𝑀) × 𝑚, respectively. 

Error floor in decoding various zipper 

frameworks (including staircase and diagonal 

zipper codes), is caused by certain structures 
called stall patterns. A stall pattern is a set of error 

locations in various rows of the real buffer 𝐵 that 

cannot be corrected by the component BCH 
decoder which corrects up to 𝑡 errors. Small stall 

patterns have the dominant impact on the error 

floor performance of zipper codes[6]. In the 

diagonal zipper code, the smallest stall patrtern is 
of size (𝑡 + 1)(𝑡 + 2)/2.  

Low-Latency Zipper Codes 

Although, comparing to staircase codes, diagonal 

zipper codes can decrease the required memory 

size for encoding and decoding by about a factor 

of 2, their latency for ultra-low overheads is still 

too high and thus not acceptable in high-
throughput applications. The interleaver map 𝜑 is 

an important component of the zipper framework 

that directly affects the code performance and 

memory requirement. To deal with memory and 

latency issue in conventional zipper frameworks, 

here, we propose a new interleaver map bit 

protection scheme that can significantly reduce 

the memory size while maintaining a good FEC 

performance. 

  

1. Quasi-Diagonal Zipper Framework 

In the diagonal zipper codes, the virtual bits of 
each row are obtained from the real bits of 𝑚 

previous rows. Equivalently, the real bits of each 
row are distributed among the next 𝑚 rows. This 

induces a high dependency between the rows of 

real and virtual buffers. Here, to achieve a sharp 

waterfall performance a large decoding window 
size, 𝑀, as a multiple of 𝑚, is required.  

In order to reduce the dependency between 

the rows of real and virtual buffers, we introduce 

a quasi-diagonal interleaver map with the 
coupling factor 𝑐. This interleaver map allows up 

to 𝑐 bits of the virtual part of a row be copies of 

real bits of a single row, thereby reducing the 
dependency by a factor of 𝑐. Fig. 1 shows a 

zipper code with 𝑚 = 6 and three types of 

interleaver maps: one diagonal (left), and two 
quasi-diagonals with 𝑐 = 2 (middle and right). As 

shown in Fig. 1, for the diagonal design, the 
maximum lookback is 𝜆 = 6 while for the quasi-

diagonal designs, 𝜆 = 3.  

It is easy to see that with quasi-diagonal 

interleaving, the required encoder memory size is  
𝑚(𝑚 𝑐⁄ +1)

2
+ 𝑚 bits and the required decoder 

memory is 𝑚(𝑚 (2𝑐)⁄ + 𝑀) bits, but here 𝑀 has 

to be measured against 𝑚 𝑐⁄ . Therefore, 

increasing the coupling factor, 𝑐, reduces the 

required memory sizes considerably. Note that 

the decoding latency is linearly proportional to 
𝑚𝑀 and therefore decreases significantly with 

increasing 𝑐. 

Increasing  𝑐, however, may induce an early 

error floor to the  BER curve of the quasi-diagonal 

zipper code. Error floor in decoding various 

zipper frameworks (including staircase, diagonal 

and quasi-diagonal zipper codes), is caused by 
certain structures called stall patterns. A stall 

pattern is a set of error locations in various rows 
of the real buffer 𝐵 that cannot be corrected by 

the component BCH decoder which corrects up 
to 𝑡 errors. Small stall patterns have the dominant 

impact on the error floor performance of zipper 

codes[6]. The quasi-diagonal interleaving reduces 

the size of smallest stall pattern and also 

increases the multiplicity of the stall patterns. For 
example, when 𝑐 > 𝑡, the minimum-size stall 

patterns are of size 𝑡 + 1, where as in the 

diagonal interleaving, the smallest stall patrtern is 
of size (𝑡 + 1)(𝑡 + 2)/2. Next, we propose an 

approach to address this problem, leading to a 

powerful zipper code design with low latency and 

good waterfall and error floor performances 

 

2. Extra Level of Protection 

Where a stall pattern is formed, errors cannot be 

resolved by the component codes that protect the 

bits in error. Adding protections by additional 

component codes can potentially resolve the stall 

pattern errors. Thus, we propose a new zipper 

framework in which each bit is protected by three 

component codes. This extra level of protection 

can be implemented by considering the zipping 
triplet (𝐴1 , 𝐴2, 𝐵) with two virtual sets, 𝐴1 and 𝐴2, 

and their corresponding (and possibly different) 
interleaver maps denoted by (𝜑1, 𝜑2) with 

 

Fig. 1: Zipper code with 𝑚 = 6 for diagonal (Left), quasi-diagonal type1 with 𝑐 = 2 (middle), and quasi-

diagonal type 2 (right) with 𝑐 = 2 structures  
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coupling factors (𝑐1 , 𝑐2), respectively. In order to 

increase the size of minimum stall patterns, we 
design (𝜑1 , 𝜑2) interleavers such that each bit in 

the real buffer is mapped to different rows of the 

two virtual buffers. For example, one can 

consider the type 1 and type 2 interleaver maps 

of Fig. 1 for each of the virtual buffers. Note that 

because of this extra level of protection, one 

might need to use a BCH component code with a 

larger Galois Field (GF) size.  

 

Based on the discussion of [6], the size of 

smallest stall pattern is related to the number of 

affected rows by that pattern. In a conventional 

zipper code with a diagonal interleaver, if there 
exists 𝑡 + 1 errors in 𝑖-th row of the real buffer, 

these errors are distributed in 𝑡 + 1 distinct rows 

of the virtual buffer. As a result, the decoder is 
trapped in a stall pattern if all 𝑡 + 2 rows 

(including the 𝑖-th row) have at least 𝑡 + 1 errors. 

The size of the smallest stall pattern is 
therefore (𝑡 + 1)(𝑡 + 2)/2, whcih is proportinal to 

the number of affected rows, 𝑡 + 2. In the 

proposed low-latency zipper framework with 𝑐 >
𝑡, since we have two virtual buffers with different 

interleaver maps, the number of affeccted rows is 
at least 𝑡 + 3. Therefore, the size of the minimal 

stall pattern for this framework scheme is lower 
bounded by (𝑡 + 1)(𝑡 + 3)/3. For example, when 

BCH code with triple-error-correction capability is 

used, the smallest stall pattern size larger than or 

equal to 8. Fig. 2 shows an example of stall 

patterns with minimum numbers of affected rows 
for 𝑡 = 3 and size 9. Note that while the minimum 

stall pattern size is smaller than that in the 

conventional scheme, with this extra level of 

protection we did not observe error floor in the 

region of interest for the proposed codes.                   

Simulation Results 

In this section, we present our simulation results 

for different types of zipper codes including, 

diagonal (D), quasi-diagonal (QD), and quasi-

diagonal with extra level of protection (QDE). 

Here, we consider triple-error-correction BCH as 

the component codes in the zipper framework 

design for three low overheads: 1.65%, 2.04%, 

and 2.61%. In simulations, we have considered 

BCH component codes generated from GF size 

213. In Fig. 3, we plot the post-FEC BER versus 

pre-FEC BER performance curves for various 

code designs. For QDE-zipper, code parameters 
(𝑀, 𝑚, 𝑐) are (2400,400,8), (1950,400,8), and 

(1536,650,5) for OHs from 1.65-2.61%, 

respectively. It can be observed from these 

curves that, compared to the diagonal interlaver, 

the quasi-diagonal interleaver map is able to 

reduce the memory size at the cost of an early 

error floor. The designed QDE zipper codes, on 

the other hand, can provide a waterfall 

performance as sharp as the diagonal zipper 

codes, without any sign of an error floor down to 
a 10−14 BER, while keeping memory size 

significantly lower. All of the proposed zipper 

codes operate within 0.6dB gap to the BSC 

channel capacity and can also be implemented 

using the more practical pipeline decoding with 

minimal performance loss. Our simulation results 

in coded modulation schemes show that the 

performance loss of the proposed scheme is less 

than 0.03dB compared to conventional staircase 

and zipper codes. 

Conclusions 

In this paper, we proposed a new hard-decision 

FEC scheme based on zipper framework, named 

QDE-zipper code, which is able to reduce the 

required memory and latency for low-overhead 

high-throughput applications. Compared to the 

existing diagonal zipper and staircase codes with 

low-overheads, QDE-zipper code was shown to 

reduce the decoding memory by up to a factor of 

13 and 26, respectively. The proposed scheme 

attains a sharp waterfall performance without any 
sign of error floor down to 10−14 and operates 

within 0.6 dB gap to the BSC channel limit. 
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Fig. 2: An example of stall pattern of size 9 for proposed 

zipper code with 𝑚 = 8 and coupling factors 𝑐1 = 𝑐2 = 4. 

 

Fig. 3: Performance curves of, staircase, diagonal, and 

proposed zipper codes for different low overheads. 
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