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Abstract We propose a novel joint neural network equalizer in a 248 Gbit/s VSB PS-PAM8 transmission 
system at the C-band. The proposed joint neural network equalizer outperforms the conventional neural 
network equalizer with significant MACC calculation complexity deduction. 

Introduction 
Driven by the consistently increasing data 

traffic demand, the solutions for the high-speed 
data-interconnect (DCI) will be essential for the 
future optical network. To support next-
generation 800G or even 1.6T data connection, 
the single line bitrate beyond 200 Gbit/s will be 
the top priority [1-5]. However, the transmission 
distance for the intensity modulation and direct 
detection (IM/DD) system beyond 200 Gbit/s at 
the C-band is limited to less than 2 km standard 
single mode fiber (SSMF) due to the selective 
frequency fading and severe nonlinear 
impairments [6-7]. Therefore, advanced digital 
signal processing (DSP) algorithms are required 
for enhancing system performance. 

With the rapid development of machine 
learning technology, neural networks (NN) have 
been widely adopted as nonlinear equalizers in 
IM/DD systems [8-10]. However, the 
conventional NNs have relatively weak 
performance on compensating for linear 
impairments due to the nonlinear activation 
function and sophisticated nonlinear structure. 
Therefore, the mixed linear and nonlinear 
impairments are compensated by the DSP 
consisting of the feedforward equalizer (FFE) and 
the NN equalizer or the relatively complex NN 
equalizer with extended memory depth in 
previous work [11-13]. The former leads to front-
end DSP-induced impairments and high delay 
due to the cascaded DSP structure, and the latter 
suffers excessive computational complexity. We 
have proposed a joint neural network (JNN) 
equalizer consisting of a linear forward-path (LP) 
and a nonlinear forward-path (NLP) in parallel to 
decouple the linear and nonlinear impairments 
compensation in the NN equalizer. The 
decoupling method significantly reduces the 
nonlinear taps while improving the equalization 
performance. The novel joint network structure 
provides a solid solution for the low complexity 
and high-performance NN structure design. 

In this paper, it is the first time to achieve the 
vestigial sideband (VSB) IM/DD transmission 

system beyond 200 Gbit/s at the C-band. With 
the PS technique and JNN equalizer, 92 GBaud 
PS-PAM8 signals transmitted over 10 km SSMF 
meet the normalized generalized mutual 
information (NGMI) threshold at 0.88 for 20% 
soft-decision forward error correction (SD-FEC). 
Compared with the conventional NN equalizer, 
the JNN equalizer improves the receiver 
sensitivity with only 25.63% multiply-accumulate 
operation (MACC) calculation complexity. 
 
Joint Neural Network Equalizer Principle 

The principle and structure of the JNN are 
depicted in Fig. 1. The JNN consists of two 
parallel paths: the LP and NLP. The input vector 
𝑥௅௉  of LP consists of 𝐿௅௉  symbols. It should be 
noted that all the nonlinear factors are excluded 
by the LP to enhance linear fitting ability. The 
activation function of the LP is the proportional 
function 𝑦 = 𝑘𝑥,  which is appropriate for 
compensating linear impairments. The factor 𝑘 
controls the proportion of LP output in the final 
JNN output, which is not negligible for the 
combination of the LP and NLP. Meanwhile, 
given the combination law of convolution, no 
hidden layer is required in the LP. The forward 
calculation of the LP can be expressed as: 
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Here, 𝑥௅௉ denotes the input symbol sequence.  

 
Fig. 1: The diagram of the layer structure of JNN. 
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𝑤௅௉ represents the weights of the LP. 𝑓௟ and 𝑦௟௣ 
are the linear activation function and the output of 
the LP. Compared with the LP, the NLP contains 
the additional hidden layer to provide the high-
order nonlinear fitting capability. The hidden layer 
of the NLP can be the fully connected layer, 
convolution layer, or recurrent layer. Here, the 
long short-term memory (LSTM) layer is selected 
in this experiment. As the variant of the recurrent 
neural network (RNN), the LSTM layer stores the 
information of the current moment and the 
previous moment in the cell state, which solves 
the gradient explosion and vanishment problem. 
Significantly, the output of the NLP is activated by 
a designed nonlinear function to enhance the 
ability of nonlinear fitting. The sigmoid function is 
chosen here to avoid information loss. 

The output of the LP and NLP is added to get 
the final output, which represents the recovered 
PAM symbol. While training, the mean square 
error (MSE) loss of the JNN output is calculated 
and fed back to adjust the weights to get 
convergence. In summary, the two parallel paths 
are effectively combined to compensate for linear 
and nonlinear impairments. 

Experimental Setup 
The experimental setup is demonstrated in Fig. 

2(a). At the transmitter side (Tx), the external 
cavity laser (ECL) operating at 1550 nm 
generates the continuous wave. The 14.5 dBm C-
band light wave is injected into an intensity 
modulator (IM) with 40 GHz 3-dB bandwidth 
driven by the 92 Gbaud PAM electrical signals. 
The electrical signals are generated by the 92 
GSa/s arbitrary waveform generator (AWG) and 
amplified by an electrical amplifier. After the 10 
km SSMF transmission, the signals are amplified 
by an Erbium-doped fiber amplifier (EDFA). 
Meanwhile, a tunable optical filter (TOF) with 0.8 
nm bandwidth is employed to generate optical 
VSB signals. The optical spectra of the optical 
signal before and after the TOF are depicted in 
Fig. 2(i). The optical power is attenuated by the 
attenuator to weaken nonlinear effects. At the 

receiver side (Rx), the optical signals are 
detected by a photodiode (PD) with 70 GHz 3-dB 
bandwidth. The detected electrical signals are 
amplified by an electrical amplifier with 22 dB 
gain and then captured by a 256 GSa/s digital 
oscilloscope with 59 GHz 3-dB bandwidth for 
offline DSP.  

The block diagrams of DSP employed at the Tx 
and Rx are shown in Fig. 2(b). The origin binary 
bitstream is mapped into uniformly distributed 
PAM4 or probability shaping (PS) PAM8 symbols. 
The PS symbols follow the Maxwell-Boltzmann 
distribution. The entropy of PS-PAM8 symbols is 
set as 2.7 bits/symbol. The PAM symbols are 
oversampled to 2 Sa/symbol for the following 
shaping and pre-equalization (Pre-Eq). A 128-tap 
root raised cosine filter with a 0.05 roll-off factor 
is adopted to realize Nyquist shaping. After that, 
a Pre-Eq filter is applied to pre-compensate the 
impairments induced by the bandwidth limitation. 
The weights of the Pre-Eq filter are obtained from 
the 53-tap T/2-spaced CMA equalizer at the Rx. 
Finally, the electrical PAM symbols are 
resampled to 1 Sa/symbol. At the Rx, two NN 
equalizers are considered and compared in two 
DSP options. In both DSP options, the captured 
PAM symbols are resampled to 1 Sa/symbol at 
first. The retiming algorithm is applied to mitigate 
the sampling offset. The Kramers-Kronig (KK) 
scheme is adopted to mitigate the signal-signal 
beating interference (SSBI) of the received VSB 
symbols. However, due to the high carrier-to-
signal ratio of the transmitted signals, the KK 
scheme shows limited performance improvement. 

In the DSP Opt. 1, the JNN equalizer is 
adopted to compensate for impairments. As for 
the structure of the JNN equalizer, the LP 
consists of an input layer, an output layer, and a 
linear activation function. Meanwhile, the NLP 
consists of an input layer, an LSTM layer as the 
hidden layer, an output layer, and a nonlinear 
activation function. The length of the input symbol 
sequence for LP and NLP is set as 153 and 15, 
respectively. The number of neurons in the LSTM 
layer of JNN is set as 31. The value of the control 

 
Fig.2: (a) The diagram of the experimenta setup. (b) The block diagram of DSP. Inset: (i) The optical spectra before and after TOF. 
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factor 𝑘  is set as 1.6. In the DSP Opt. 2, the 
conventional NN equalizer is adopted as the 
baseline model, which consists of an input layer, 
an LSTM hidden layer, and an output layer. The 
number of the input symbols and neurons are set 
as 153 and 31 to be consistent with the JNN 
equalizer for fair comparison. The details of the 
NN equalizers are presented in Tab. 1. 

 
Tab. 1: Hyperparameters of the NN equalizers 

Parameter Value 
Gradient optimizer Adam 

Epoch 35 
Batch size 80 

Initialization strategy Gaussian 
Loss function MSE loss 

 

Experimental results and discussions 

The NGMI curves versus the received optical 
power for 92 GBaud VSB PAM4 and PS-PAM8 
signals transmitted over 10 km SSMF are 
demonstrated in Fig. 3. The NGMI is generally 
regarded as an accurate indicator to measure the 
performance of uniformly distributed and PS 
signals. Compared with the JNN equalizer, the 
conventional NN equalizer shows limited 
performance gain. With the JNN equalizer, the 
PAM4 and PS-PAM8 signals meet the NGMI 
threshold when the received optical power is -0.1 
dBm and 2.5 dBm, respectively. The probability 
distribution of the recovered PS-PAM8 signals 
with the JNN or conventional NN equalizer is 
depicted in Fig. 3. 

 
Fig. 3: NGMI curves versus received optical power of PAM4 
and PS-PAM8 signals with the JNN or conventional NN. 

 
To further investigate the performance 

improvement brought by the parallel structure of 
the JNN equalizer, the performance of the JNN 
with or without the LP is compared in Fig. 4. The 
LP significantly improves the performance of the 
JNN equalizer. The decoupling mechanism of 
linear and nonlinear impairments compensation 
in the NN equalizer improves the compensation 
ability of linear impairments while mitigating the 
interference of linear damage to nonlinear 
equalization. The constellation diagrams of the 

recovered PAM4 and PS-PAM8 signals with the 
LP in the JNN equalizer is depicted in Fig. 4. 

 
Fig. 4: NGMI curves versus received optical power of PAM4 
and PS-PAM8 signals with or without the LP. 
 

As for the computational complexity, the MACC 
is adopted as a measurement indicator. The 
MACC refers to the times of multiple-add 
operation, which determines the cost of hardware 
resources. The MACC complexity of the output 
layer and LSTM layer in the NN equalizers is 
expressed as: 

4 ( )LSTM layer H I H

Output layer H O

C n n n
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According to the structure of the JNN and 
conventional NN equalizer, the MACC calculation 
complexity of these two NN equalizers is 5857 
and 22847, respectively. Compared with the 
conventional NN equalizer, the proposed JNN 
equalizer performs better with only 25.63% 
MACC calculation complexity. 

 
Fig. 5: The MACC complexity per symbol of the DSP. 

Conclusions 

In this paper, we propose a JNN equalizer in a 
VSB IM/DD system beyond 200 Gbit/s/λ at the C-
band. The proposed novel JNN equalizer 
decouples the linear and nonlinear impairments 
compensation in the NN equalizer to improve 
equalization performance with the 74.37% MACC 
calculation complexity reduction.  
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