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Abstract We compare three different neural network architectures for nonlinearity mitigation of 32 GBd 

OOK and QPSK signals after transmission over a dispersion-compensated link of 10-km SSMF and 10-

km DCF. OSNR gains up to 2.2 dB were achieved using reservoir networks, suitable for fast training. 

©2022 The Author(s)

Introduction 

Current optical networks are moving towards new 

digital services (e.g. low-latency high-definition 

streaming media and cloud computing) that will 

revolutionize the 5G and beyond infrastructures. 

One key underpinning approach driving this goal 

is brain-inspired machine-learning (ML) assisted 

concept which has been shown to improve 

computational speed and latency in comparison 

to architectures based on von Neumann [1-3]. 

Another critical aspect required to achieve 

such high-end services relies on high-capacity 

data transmission. However, moving from lower 

spectrally efficient modulation formats to higher-

order (multi-level) modulation formats, as a 

means to increase capacity, requires higher 

received optical signal-to-noise ratios (OSNR). 

The use of higher launch powers to realize a high 

OSNR introduces fiber Kerr nonlinear distortions 

on the transmitted data signals. Until recently, 

classical approaches in both optical [4-7] and 

digital domains [8-10] have been used for 

nonlinearity mitigation of telecom signals. 

However, leveraging the benefits of ML-based 

artificial neural networks (NN) for nonlinearity 

mitigation is a promising paradigm shift for 

improving signal quality with high computational 

speed and low latency [11-14]. 

In this contribution, we employ numerical 

simulations to investigate the nonlinearity 

mitigation performances of three key artificial 

NNs (i.e., reservoir computing network (RCN), 

recurrent neural network (RNN) and feedforward 

neural network (FNN)). After independently 

transmitting two different modulation formats 

(32 GBd single-polarization non-return-to-zero 

(NRZ) on-off keying (OOK) data signal and 

32 GBd quadrature phase-shift keying (QPSK) 

data signal) over a cascade of a 10-km standard 

single-mode fiber (SSMF) and a 10-km 

dispersion-compensated fiber (DCF), we 

compare and report on the nonlinear mitigation 

performances of the investigated NNs for those 

modulation formats. 

Data Generation and Simulation Setup 

To model the various NN architectures and 

evaluate their nonlinear mitigation performances, 

we use a numerical simulation based on 

VPIphotonics Design Suite 11.1 for generating 

datasets with different modulation formats and 

noise levels. The whole simulation setup is 

depicted in Fig. 1. The datasets are generated for 

the two investigated modulation formats: 32 GBd 

NRZ OOK and 32 GBd QPSK. To generate the 

optical data signals, pseudo-random binary 

sequences (PRBS) of order 216 are pulse-

shaped, reconstructed by a digital-to-analog 

converter (DAC) and applied to an IQ modulator 

to modulate a continuous wave emitted by an 
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Fig. 1: Simulation setup depicting a transmitter capable of generating 32 GBd NRZ OOK or 32 GBd QPSK signals, a 

transmission link, and corresponding neural network based direct-detection receiver and a coherent receiver for the signals. 
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external cavity laser (ECL, 1552.52 nm, 

+10 dBm). We intentionally introduced an 

additive Gaussian noise to the generated data 

with the aim of increasing the interplay of 

amplitude noise and nonlinearity in the 

transmission fiber. The generated data is 

received after it is transmitted over a cascade of 

a 10-km SSMF and a 10-km DCF. The Erbium-

doped fiber amplifier (EDFA, 5.5-dB noise figure) 

before the link is used to set the launch power of 

the data to +13 dBm. Note that the launch power 

is kept fixed in all of the investigated cases. The 

primary focus of our work is on nonlinearity 

mitigation, thus we use a DCF, after the SSMF, 

to minimize the accumulated dispersion of the 

received data. After compensating for the 

transmission losses using another EDFA (5.5-dB 

noise figure), a set OSNR stage is used to 

emulate a further degradation on the data signal 

and allow for OSNR variation. In order to train the 

NNs, the transmitter output signal bypassing the 

link is used as a target signal in the training and 

also for visualization. At the receiver, we employ 

an optical bandpass filter (OBPF) to suppress the 

out-of-band amplified spontaneous emission 

noise. The OOK signal is detected using a single-

ended photodiode (PD) followed by a matched 

filter to optimize the received SNR. However, a 

single-polarization coherent receiver is used to 

receive the QPSK signal. The photocurrents are 

sampled at 8 samples per symbol for OOK, 4 

samples per symbol for QPSK and normalized to 

have the same root-mean-square amplitude as 

the target before feeding the data to the NNs. The 

NN output is then resampled using optimal 

thresholds and sample phases and decoded to 

generate the output bitstream. Comparison with 

the transmitted bitstream yields the BER. 

Feedforward Neural Network (FNN) 

Fig. 2(a) depicts the architecture of a time-

delayed FNN. It is implemented using 

TensorFlow library [15]. In our realization, we 

built the input vector ut to the model using a 

shifting time window (k+1 samples length) to 

contain k/2 samples from both, the past and the 

future, to predict a single output sample. For time 

instants with insufficient past and future samples, 

the remainder values are set to zero. Note that 

FNN does not store sequential information of the 

input [16]. Based on the performance and training 

time, a window of 5 symbols is chosen as a 

reasonable size. Thus, the parameter k is equal 

to 40 and 20 for OOK and QPSK signals, 

respectively. After model selection, the hidden 

layer consists of 64 neurons, rectified linear unit 

(ReLU) activation function for model trained on 

OOK and 32 neurons, exponential linear unit 

(ELU) activation function for model trained on 

QPSK. The output layer provides the desired 

mitigated signal using a linear transfer function. 

Recurrent Neural Networks (RNN) 

In its simplest form, the RNN architecture 

contains recurrent connections over its M hidden 

layer nodes which enables it to capture temporal 

dynamics of a signal [16] as shown in Fig. 2(b). 

Similar to FNN architecture, the input vector to 

RNN is also time-delayed. The model trained on 

OOK contains 32 recurrent units with ReLU 

activation while the model trained on QPSK 

contains 128 recurrent units with hyperbolic 

tangent (tanh) activation in the hidden layer. The 

hidden layer is followed by the linear output layer 

predicting the desired equalized signal. The 

implementation is in TensorFlow. 

Reservoir Computing Network (RCN) 

Fig. 2(c) depicts the RCN architecture [17]. The 

distorted signal, u[t], is sent into the reservoir via 

input weight matrix Win. The reservoir weight 

matrix, Wres, and Win are used to compute the 

reservoir state s[t]. The hidden layer (reservoir) 

has a recurrent connection over itself and the 

reservoir states are used to update the output via 

the output weights Wout. The RCN only trains the 

output layer using ridge regression. It is 

implemented using the library easyesn [18]. For 

OOK it has 100 reservoir nodes and spectral 

radius of 0.45 [17] while for QPSK it uses 300 

reservoir nodes and spectral radius of 0.85. 

Results and Discussion 

The performance metric for our model selection 

was based on bit-error ratio (BER). We converted 

 

Fig. 2: Architectures depicting the structures of the input, hidden and output layers of (a) FNN, (b) RNN and (c) RCN. The 

input signal and output mitigated signal are denoted by u and y, respectively of length n. The total number of past and future 

samples taken from the distorted signal in the input vector at each time instant t is denoted by k.  
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the BER values to Q2-factors using the relation: 

 𝑄𝑑𝐵
2 = 20 × 𝑙𝑜𝑔10 [√2 𝑒𝑟𝑓𝑐−1(2 × 𝐵𝐸𝑅)]. The 

model selection for FNN and RNN was performed 

by varying the number of units in the hidden 

layers (from 4 to 512), activation function (ReLU, 

ELU, tanh, sigmoid), optimizer (Adam, Stochastic 

Gradient Descent, Root Mean Squared 

Propagation) and learning rate (10-3, 10-2, 10-1). 

Increasing the hidden layer units in FNN up to a 

certain extent improved the performance but 

further increase led to saturation. The number of 

hidden layer units for RNN do not follow a specific 

pattern and hence the best performing RNN was 

chosen after varying the hidden units. The 

number of nodes and spectral radii are two 

important hyper-parameters characterising the 

memory of a RCN. Increasing the reservoir size 

improves the Q2-factor until it eventually stays 

constant between 300 and 500 nodes. However, 

increasing the size of the hidden layer requires 

longer training time. The overall training for RCN 

was ~ 5 times faster than for RNN. 

We exemplarily show comparison of eye 

diagrams for OOK in Fig. 3(a) and constellation 

diagrams for QPSK in Fig 3(b), respectively, for 

the different NN models at 12-dB OSNR. They 

indicate that all three models are able to mitigate 

distortion to a great extent. Fig. 3(c) summarises 

the Q2-factor vs OSNR results for OOK (see 

Fig. 3(c)(i)) and QPSK (see Fig. 3(c)(ii)) signals. 

While for OOK the models give moderate OSNR 

gains of 0.3 dB (RCN), 0.4 dB (FNN) and 0.5 dB 

(RNN), the OSNR gains using a QPSK signal is 

more pronounced with 1.4 dB for FNN and 2.2 dB 

for both RNN and RCN. All gains were measured 

at the hard-decision forward-error-correction 

(HD-FEC) threshold (i.e., 𝑄𝑑𝐵
2 = 8.5 𝑑𝐵). 

One critical difference is that the RCN model 

uses 1 sample per time instant to perform signal 

equalisation while FNN and RNN are fed with 41 

samples (OOK) and 21 samples (QPSK) each 

time instant to achieve a comparable 

performance to the RCN. The complexity of 

training increases as the FNN and RNN models 

get deeper and wider. Both FNN and RNN have 

significant limitations in terms of complex input 

vector and longer training times. Owing to these 

limitations, RCN is a favourable candidate to 

utilise the potential of machine learning for signal 

equalization in a practical scenario. 

Conclusion 

In this work, we compared different approaches, 

based on neural networks to mitigate typical 

nonlinear impairments in optical transmission 

links. We focused on OOK and QPSK, but plan 

to extend our approach to higher-order 

modulation formats and more challenging link 

conditions. OSNR gains of up to 2.2 dB were 

realized using our networks. While RCNs are not 

in widespread use for nonlinearity mitigation, they 

achieved similar gains compared to RNNs, which 

are used more often in this application. At the 

same time RCNs allowed for a 5-fold reduction in 

training time, which becomes critical, when a 

more dynamic training during link operation is 

envisaged. So far, we have performed signal 

equalization using a supervised learning 

approach with a consistent training dataset to 

learn model weights for prediction. The emerging 

area of semi-supervised learning [19, 20] can be 

explored as a future scope to develop an 

adaptive learning equalizer that further 

decreases the data collection and training efforts. 
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Fig. 3: Nonlinearity mitigation comparison using reservoir computing network (RCN), recurrent neural network (RNN) and 

feedforward neural network (FNN): (a) Eye diagrams for the uncompensated and mitigated 32 GBd NRZ single-polarization 

OOK signal at 12-dB OSNR. (b) Constellation diagrams for the uncompensated and mitigated 32 GBd single-polarization 

QPSK signal at 12-dB OSNR. (c) Q2-factor vs OSNR performance comparison for the OOK and QPSK signals. 
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