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Abstract Photonic reservoir computing is a promising processing solution for the equalization of fiber 

optic communication signals. We simulate the nonlinear equalization of 64 Quadrature-Amplitude 

Modulated signals using a fully passive space multiplexed reservoir. The system deploys direct detection 

using the recently proposed Kramers-Kronig receiver.  ©2022 The Author(s) 

Introduction 

The ever-increasing demand for data traffic 

requires challenging current limitations in both 

transmission and processing technologies. As 

processing distorted signals is often required 

after transmission, the throughput and complexity 

of the system is largely impacted by the digital 

signal processing (DPS) deployed.  

Advances in photonics enabled shifting focus 

to optically implementable processing solutions. 

Indeed, the maturing field of optics boasts several 

features that make it useful in aiding or replacing 

digital signal equalization. This includes high 

bandwidths, deployment as integrated circuits, 

and parallelism by wavelength multiplexing.  

An example of optical processing is the 

photonic reservoir computing [1–3]. A reservoir 

can be created from a dynamic system by 

defining function-performing nodes that leverage 

the system’s natural nonlinearities. The nodes 

are connected through weighted connections that 

are tolerant to the inherent manufacturing 

variations or natural uncertainty present in 

hardware. These physical reservoirs are then 

leveraged for performing a range of tasks in 

machine learning. Of particular interest is the 

nonlinear equalization of signals, which is a 

demanding problem for legacy DSP resulting in 

high latency and power consumption. We attempt 

to address this issue in coherent optical 

communication systems that use Quadrature-

Amplitude Modulation (QAM). To simplify the 

detection process, which is otherwise hardware-

demanding, the recently proposed Kramers-

Kronig (KK) receiver  [4] is used. The KK receiver 

boasts a simple hardware implementation 

consisting of a single photodiode, and performs 

the phase reconstruction of the complex signal by 

leveraging the well-known KK relations. This 

receiver has been gaining popularity due to its 

hardware simplicity and accurate signal 

reconstruction compared to other schemes  [5,6]. 

An important system consideration is that a high-

power subcarrier must be added to the signal 

either at the receiver or the transmitter. For 

complexity and cost constraints, the latter is 

preferred but would give rise to high nonlinear 

effects in the transmission fiber. 

To this end, we numerically simulate the use 

of a passive photonic reservoir for the nonlinear 

equalization of a high intensity 64-QAM signal 

propagating in a Standard Single Mode Fiber 

(SSMF) spanning lengths of up to 100 km and 

received by a KK receiver. Nonlinearities 

originating from the fiber Kerr effects and the 

transmitter’s nonlinear behavior are considered. 

In contrast to classical RC which is trained using 

ridge regression, our equalizer backpropagates 

through the entire receiver and post-processing 

algorithm to train 16 complex readout weights in 

the optical domain. As we will show, this provides 

additional nonlinearity and better performance. 

Testing errors reported fall well below 1e-3 pre- 

Forward Error Correction (FEC) Bit Error Rate 

(BER). This passive, latency free, and symbol 

rate insensitive implementation is a powerful 

solution for mitigating communication system 

errors, which along with the KK receiver can be 

viable solutions for the deployment of high data 

rate and high modulation format systems for 

inter- and intra-data center applications.  

Photonic Reservoir 

Our implementation of the reservoir is a Silicon 

Nitride based photonic integrated circuit, making 

it a small-footprint, on-chip reservoir. This 

reservoir, which we term the Four-Port 

Architecture  [7], is made of 3x3 Multi-Mode 

Interferometers (MMI) that serve as nodes and 

are interconnected by waveguides. Every node 

has an external input, an external output, two 

inputs from within the reservoir, and two outputs 

leading into the reservoir. External inputs are 

used for injecting signals into the reservoir and 

external outputs are connected to weighting 

elements where they can be weighted and 
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summed. The waveguide delay lines connecting 

nodes slow down the signal to allow meaningful 

mixing on the timescales of the input signal. A 16 

node reservoir is shown in Fig 1.  

The waveguide-induced phase and amplitude 

changes that occur in the reservoir are largely 

caused by the manufacturing tolerances and 

imperfections inevitably present in silicon 

photonics. These act as internal reservoir weights 

that we do not train or optimize. We are, however, 

interested in the length of these lines, as they 

control the amount of memory in the reservoir 

and the time differences between two mixing 

signals. Thus, the delay line length is an 

optimizable parameter in our setup.  

This is a passive reservoir by design; it is 

driven by the input signal and uses no additional 

power. Although this is a power advantage, MMIs 

perform linear functions that just redistribute 

portions of the inputs over the outputs, which 

would not be sufficient to solve nonlinear tasks. 

The required nonlinear transformation is then 

added through utilizing innate components in the 

system where the reservoir is inserted and which 

may be application specific. In a communication 

system, a receiver performing the squaring 

function is a suitable candidate  [8]. Our system 

is therefore a variant of a standard reservoir, 

where the nonlinearity happens after the readout 

weights as opposed to within the reservoir.  

Kramers-Kronig Receiver  

The Kramers-Kronig receiver employs a simple 

photodetector to detect a complex signal’s power 

and reconstructs its complex nature through a 

series of processing steps. This is possible when 

a complex signal’s phase is uniquely related to its 

amplitude, which can be guaranteed provided 

that a pair of conditions is respected  [9]. First, it 

must be a Single Side-Band (SSB) signal. Thus, 

an additional optical subcarrier should be added 

to either edge of the signal’s spectrum. Second, 

the subcarrier must have sufficiently higher 

power with respect to the signal, this is termed 

the Carrier-Signal Power Ratio (CSPR). In our 

simulations, error-free reconstruction was 

achieved at a CSPR around 9 dB.  

The KK receiver’s pipeline is shown in Fig. 2. 

Consider a complex signal 𝑠(𝑡) that is impinging 

on a photodetector. The current from the 

detector, 𝑖(𝑡), is the measurable signal obtained 

and its square root corresponds to |𝑠(𝑡)|. 
Through the receiver operation detailed in  [9–

11], the complex signal 𝑠(𝑡) can be reconstructed 

from the measured current signal. The nonlinear 

operations in this pipeline are also leveraged to 

improve the reservoir’s nonlinearity equalization.   

System Details and Results   

The transmission system is simulated using VPI 

Photonics TransmissionMaker software  [12], 

where a single polarization 64 QAM transmitter 

transmits over fiber lengths ranging from 20 to 

100 km. The role of the reservoir is to target 

nonlinearity-induced errors generated from self-

phase modulation due to the Kerr effect and from 

the nonlinear response of the modulator. To 

focus on that role, we compensate linear 

dispersion separately using a dispersion 

compensating fiber with matched dispersion 

parameters to those of the transmission fiber. For 

pronounced nonlinearities we also transmit the 

signal at 3 dBm with CSPR of 11 dB. The signal 

is then amplified to correct for the fiber 

attenuation and an additional 15 dB of power is 

added. The receiver is the KK receiver pipeline 

described in the previous section, where the 

detector simulated exhibits shot and thermal 

noise. No other impairments e.g. laser phase 

noise and polarization mode dispersion are 

considered. The system setup is shown in Fig. 3.  

Simulation of a 16-node reservoir, whose 

topography is shown in Fig. 1, is done in 

Photontorch  [13]. All the reservoir nodes are 

connected to the readout  and the complex-

valued optical weights are trained to approximate 

the target signal. Initially, the target before the KK 

receiver is used. This method where the pre-

receiver target is used is referred to as the Linear 

RC (L-RC), in reference to the linear nature of the 

 

Fig. 2: Operations – FFT: Fast Fourier Transform; ln: natural logarithm;  KK: KK relations; IFFT: Inverse Fast Fourier Transform; 

exp: exponential; C.R: Carrier Removal; F.S: Frequency Shift;   RRC: Root-Raised Cosine Filter. Signals –  i(t): current;  𝐹𝑛
𝑟: 

frequency coefficients of real signal (|𝑠(𝑡)|);  𝐹𝑛
𝑖: frequency coeffecients of the imaginary signal 𝑗𝜑(𝑡); 𝑠(𝑡): complex signal 

 
Fig. 1: 16 node MMI based reservoir. 
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readout. The actual target is only available after 

the KK receiver, thus requiring backpropagation 

through the receiver blocks to bridge  the gap 

between the readout weights and the final target. 

This also gives rise to a nonlinear “function” 

which encompasses the photodiode, the KK 

algorithm, and the post-processing steps. This is 

referred to as the Non-Linear RC (NL-RC) since 

a nonlinear function is now involved. In spite of 

more complicated training, significant error 

reduction is obtained through this adjustment as 

shown in Fig 4. We compare our results to a 

linear baseline, whose pipeline is shown in Fig 

3b, utilizing a 16-tap Feed-Forward Equalizer 

(FFE) instead of the reservoir. The FFE passes 

the signal through a series of 15 cascaded time 

delays. The signals at the output of every delay 

element and a portion of the original signal are 

weighted with trainable complex-valued weights 

and then summed. This is a linear block and 

would use the target before the receiver for 

adjusting the weights. 

The training dataset is used to find the readout 

weights as well as to optimize the RC and FFE 

architectures. For both setups, the length of the 

delay lines is an optimizable parameter. Sweeps 

of this value are done independently for every 

fiber link length and the optimum values are 

chosen. Optimization sweeps indicate that a time 

delay of around half the symbol period is optimum 

for almost all the links studied. The testing 

dataset, used to investigate the performance of 

the equalizers, was generated through a 

Wichmann-Hill generator  [14]. Over 130,000 

symbols are tested and the statistical BER is 

found using a gaussian approximation. The 

subcarrier induces considerable nonlinearities to 

which the high-level modulation format becomes 

very susceptible resulting in a BER on the order 

of 1e-2. Fig. 4 shows the statistical BER on the 

test set for the different fiber lengths. Although 

the distortion is caused by nonlinear effects, the 

signal benefits from utilizing information from its 

neighboring symbols and the BER improves even 

when using linear schemes, i.e. FFE and L-RC. 

However, mixing in the reservoir does not directly 

have a positive impact as compared to that of the 

FFE. It is only when the nonlinear readout is 

involved that the BER improves and is on 

average one third that of the FFE. The NL-RC 

over all the fiber lengths reduced the BER well 

below 1e-3 and maintained this performance with 

different reservoir simulations and datasets, as 

indicated by the error bars.  

Conclusions 

The transmission of a 64 QAM signal and its 

detection using the KK receiver was numerically 

shown to benefit from the use of a photonic 

reservoir to mitigate effects of fiber nonlinearities 

and transmitter imperfections, surpassing the 

performance of an optical feed forward equalizer. 

We used a novel training scheme which included 

the entire KK processing pipeline to increase the 

nonlinear computational capacity of the setup. 

This optical solution is passive, latency free, and 

insensitive to the signal baud rate. 
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Fig. 4: Testing BER (statistical assuming Gaussian 

distribution) vs link length for Linear Reservoir (blue) with no 

external nonlinearity, Nonlinear Reservoir (orange) where the 

KK receiver is leveraged as a nonlinear block, and an optical 

Feed Forward Equalizer (green) for benchmarking. 

 
Fig. 3: Simulation setup for 64-QAM signals in SSMF that are dispersion compensated. Nonlinear equalization in: a) 16 node 

reservoir with complex readout weights found linearly and through backpropagation; or b) 16 tap feed forward equalizer with 

complex weights found linearly. Acronyms - SSB Tx: Single-sideband Transmitter; CDC: Chromatic Dispersion Compensation; 

Amp: Amplifier; KK RX: Kramers-Kronig Receiver; 𝑤𝑒𝑗𝛳: complex weight with amplitude w and phase 𝛳 
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