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Abstract Photonics neural networks employ optical device physics for neuron models, and optical 
interconnects for distributed, parallel, and analog processing for high-bandwidth, low-latency, and low-
switching energy applications in AI and neuromorphic computing. We discuss silicon photonics for 
machine learning acceleration for inference and in situ training. ©2022 The Author(s) 

Advancements in machine learning (ML) and 
artificial intelligence (AI) technologies have 
enabled numerous applications, including 
sophisticated recommendation models, natural 
language processing, computer vision, 
augmented reality, and so on [1], [2]. The heavy 
dependence of ML algorithms training on large 
data sets has enabled The groundbreaking 
progress of these AI applications in different 
fields. The interconnection of neurons in artificial 
neural networks (ANNs) can be described by a 
matrix, with the processed data represented as a 
vector. Training on large data sets with deep 
neural networks results in large-scale dense 
matrix-vector multiplications. The improvement in 
the performance (i.e., accuracy) of many ML 
applications comes at the cost of higher 
computational power requirements [3]. There has 
been significant progress in the development of 
digital electronic application-specific integrated 
circuits (ASICs) known as AI accelerators that are 
dedicated to dense matrix computations [4], [5]. 
However, modern AI accelerators have seen two 
significant bottlenecks in energy efficiency: data 
transfer to and from memory and large matrix-
vector multiplications. Both have imposed strict 
physical limitations on the scalability and 
performance of digital electronic AI accelerators. 

Integrated photonic processors enabled by 
silicon photonics have shown promising 
capabilities in accelerating tensor (i.e., 
multidimensional vector and matrix) operations 
[6]–[9] by exploiting the high bandwidth of 
photonic devices (modulators and 
photodetectors), low latency, and minimal 
energy-delay product due to passive optical 
waveguides [10]. Some of these processors [7]–
[9] are scalable and use the parallel nature of light 
through wavelength-division multiplexing (WDM) 

to achieve large-scale interconnects and 
massively parallel data processing and transfer. 
Recent developments have shown that the 
wavelength-multiplexed silicon photonic 
platforms operate with up to 7-bit precision [11] 
and, most recently, 9-bit precision [12] on each 
multiplication unit. However, recent studies in 
these photonic processors have also seen an 
increasing demand for a rigorous photonic 
programming scheme to facilitate efficient 
communication between photonic hardware and 
its control system [6], [7], [10], [13].  

Over the ten years, several photonic neural 
networks [10] [14] approaches have been 
proposed. This can be divided into feedforward 
and recurrent (including random recurrent, i.e., 
reservoir computing [15]–[17]), or coherent  
(single wavelength) [6], [18] and multiwavelength 
[7], [9], [19]–[22] approaches, or continuous-time 
networks and spiking networks, or integrated 
approaches and free-space. In this talk, we will 
briefly highlight some of these. 

An area of machine learning that would 
benefit from the low power consumption and high 
information processing bandwidth enabled by 
photonics is the training of large neural networks. 
Several photonic architectures have been 
proposed for executing in-memory computation 
of neural network inference [6], [7], [19]. 
However, for the neural network to perform a 
practical task, the optimal network parameters 
(weights and biases) must first be determined 
using deep learning training algorithms. These 
algorithms have high computation and memory 
costs that challenge the current hardware 
platforms executing them [23]. The substantial 
energy required to train large neural networks 
using standard von Neumann architectures 
presents a high financial and environmental cost 
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[24].  
The recently proposed direct feedback 

alignment (DFA) supervised learning algorithm 
[25] has gathered interest as a bio-plausible 
alternative to the popular backpropagation 
training algorithm [26]. The DFA algorithm is a 
supervised learning algorithm that propagates 
the error through fixed random feedback 
connections directly from the output layer to the 
hidden layers during the backward pass [26]. 
Unlike backpropagation, the DFA algorithm does 
not require the network layers to be updated 
sequentially during the backward pass, enabling 
the algorithm to be a suitable candidate for 
efficient parallelization using photonics. The 
training algorithm has been used to train neural 
networks using the MNIST, CIFAR-10, and 
CIFAR-100 datasets and yields comparable 
performance to backpropagation [26]. The DFA 
algorithm has also been shown to obtain 
performances comparable to fine-tuned 
backpropagation in applications requiring state-
of-the-art deep learning networks, including 
natural language processing and neural view 
synthesis [27]. A recent theory suggests that 
training shallow networks with the DFA algorithm 
occurs in two steps: the first step is an alignment 
phase where the weights are modified to align the 
approximate gradient with the actual gradient of 
the loss function, which is followed by a 
memorization phase where the model focuses on 
fitting the data [28].  

This talk will summarize our recently proposed 
silicon photonic architecture that uses an electro-
optic circuit to calculate the gradient vector of 
each neural network layer in situ, the most 
computationally expensive operation performed 

during the backward pass. The proposed 
architecture exploits the speed (10s of GHz range 
in photonics but only 100s of MHz in electronics) 
and energy advantages of photonics to 
determine the gradient vector of each neural 
network layer in a single operational cycle.  

The renaissance of neuromorphic photonics is 
enabled by the confluence of three areas (Fig. 1): 
technological advances in integrated photonics 
due to silicon photonics, algorithmic advances in 
machine learning algorithms, and advances in 
analog photonic signal processing. In the recent 
roadmap articles [10], [29], [30], we outlined 
some scientific and technological advances 
necessary to meet the challenges of envisioning 
a practical neuromorphic processor. 
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Fig. 1: The advent of neuromorphic photonics is due to the convergence of recent advances in 
photonic integration technology, the resurgence of scalable computing models (e.g., spiking, deep 
neural networks), and a large-scale silicon industrial ecosystem. 

Tu4G.1 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



[6] Shen, Yichen, et al. “Deep learning with coherent 
nanophotonic circuits.” Nat. Photon. 11.7 (2017): 441-
446. 

[7] Feldmann, Johannes, et al. "Parallel convolutional 
processing using an integrated photonic tensor core." 
Nature 589.7840 (2021): 52-58. 

[8] Miscuglio, Mario, and Volker J. Sorger. "Photonic tensor 
cores for machine learning." Applied Physics 
Reviews 7.3 (2020): 031404. 

[9] Bangari, Viraj, et al. "Digital electronics and analog 
photonics for convolutional neural networks (DEAP-
CNNs)." IEEE Journal of Selected Topics in Quantum 
Electronics 26.1 (2019): 1-13. 

[10] Shastri, Bhavin J., et al. “Photonics for artificial 
intelligence and neuromorphic computing.” Nat. Photon. 
15.2 (2021): 102-114. 

[11] Huang, Chaoran, et al. "Demonstration of scalable 
microring weight bank control for large-scale photonic 
integrated circuits." APL Photonics 5.4 (2020): 040803. 

[12] Zhang, Weipeng, et al. "Microring weight banks control 
beyond 8.5-bits accuracy." arXiv preprint 
arXiv:2104.01164 (2021). 

[13] Prucnal, Paul R., and Bhavin J. Shastri. Neuromorphic 
photonics. CRC Press, 2017. 

[14] Huang, Chaoran, et al. "Prospects and applications of 
photonic neural networks." Advances in Physics: X 7.1 
(2022): 1981155. 

[15] Brunner, Daniel, et al. “Parallel photonic information 
processing at gigabyte per second data rates using 
transient states.” Nat. Commun. 4.1 (2013): 1-7. 

[16] Vandoorne, Kristof, et al. “Experimental demonstration 
of reservoir computing on a silicon photonics chip.” Nat. 
Commun. 5.1 (2014): 1-6. 

[17] Larger, Laurent, et al. “Photonic information processing 
beyond Turing: an optoelectronic implementation of 
reservoir computing.” Opt. Express 20.3 (2012): 3241-
3249. 

[18] Hughes, Tyler W., et al. “Training of photonic neural 
networks through in situ backpropagation and gradient 
measurement.” Optica 5.7 (2018): 864-871. 

[19] Tait, Alexander N., et al. “Neuromorphic photonic 
networks using silicon photonic weight banks.” Sci. Rep. 
7.1 (2017): 1-10. 

[20] Tait, Alexander N., et al. “Silicon photonic modulator 
neuron.” Phys. Rev. Appl. 11.6 (2019): 064043. 

[21] Tait, Alexander N., et al. “Broadcast and weight: an 
integrated network for scalable photonic spike 
processing.” J. Lightwave Technol. 32.21 (2014): 4029-
4041. 

[22] Huang, Chaoran, et al. "A silicon photonic–electronic 
neural network for fibre nonlinearity compensation." 
Nature Electronics 4.11 (2021): 837-844. 

[23] Esser, S., et al. "Convolutional networks for fast, energy-
efficient neuromorphic computing. arXiv 2016." arXiv 
preprint arXiv:1603.08270. 

[24] Strubell, Emma, Ananya Ganesh, and Andrew 
McCallum. "Energy and policy considerations for deep 
learning in NLP." arXiv preprint arXiv:1906.02243 
(2019). 

[25] Nøkland, Arild. "Direct feedback alignment provides 
learning in deep neural networks." Advances in neural 
information processing systems 29 (2016). 

[26] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. 
Williams. "Learning representations by back-propagating 
errors." nature 323.6088 (1986): 533-536. 

[27] Launay, Julien, et al. "Direct feedback alignment scales 
to modern deep learning tasks and architectures." 
Advances in neural information processing systems 33 
(2020): 9346-9360. 

[28] M. Refinetti, S. d’Ascoli, R. Ohana, and S. Goldt, “The 
dynamics of learning with feedback alignment,” 
arXiv:2011.12428 [cond-mat, stat], Nov 2020.  

[29] Berggren, Karl, et al. “Roadmap on emerging hardware 
and technology for machine learning.” Nanotechnology 
32.1 (2020): 012002. 

[30] Ferreira De Lima, Thomas, et al. “Progress in 
neuromorphic photonics.” Nanophotonics 6.3 (2017): 
577-599. 

Tu4G.1 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision


