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Abstract The capability of fibre-optic distributed acoustic sensing to detect earthquakes is enhanced 

using deep learning. A training approach combining fibre-optic and traditional seismic measurements is 

proposed to improve the classification performance of low SNR fibre-based seismic measurements. 

Results demonstrate up to 98.8% of accuracy. ©2022 The Author(s) 

Introduction 

Distributed optical fibre sensing [1] has attracted 

great deal of attention due to its potential to 

monitor physical variables with spatial resolutions 

of a few metres along tens of kilometres of optical 

fibre. Among different technologies, distributed 

acoustic sensors (DAS) [1,2] have been widely 

studied in both academy and industry.  

In recent years, the potential of using installed 

telecom optical fibres to perform spatially 

resolved monitoring of mechanical vibrations has 

motivated the use of DAS technology to develop 

distributed seismographic networks, exploiting 

existing worldwide optical communication cables 

[3,4]. Compared to conventional seismographs 

(typically separated over tens of kilometres), DAS 

can monitor seismic waves with a metre-scale 

spatial sampling. This corresponds to a huge 

improvement (about three orders of magnitude) 

in the spatial resolution provided by DAS, offering 

to specialist a new type of tool to monitor the 

propagation of earthquake waves. 

The capabilities of DAS systems to identify 

specific vibration patters over optical cables can 

be significantly enhanced using machine learning 

tools [5,6]. In DAS-based seismology, the training 

of machine learning models needs a large number 

and diversity of earthquakes to be measured with 

DAS [7,8]. To cope with these requirements, a 

generative adversarial network (GAN) has been 

used to increase the training dataset [7]. More 

recently, the use of seismic waveforms obtained 

by traditional seismographs was proposed to 

train deep learning models for classification of 

real DAS measurements [8].  

This paper proposes a training strategy based 

on seismic DAS measurements to improve the 

performance of deep learning models originally 

trained with conventional seismic data. Based on 

DAS measurements obtained over telecom and 

dedicated optical cables, results demonstrate 

that the proposed approach improves the 

classification of seismic records with low signal-

to-noise ratio (SNR). This even includes cases 

when the seismic wave level is similar to the noise 

level (0 dB SNR). Compared to deep learning 

models trained with only traditional seismic data, 

the use of a hybrid dataset improves the accuracy 

of the DAS earthquake detection up to 98.8%. 

DAS seismic measurements for deep learning 

The seismic DAS traces used in this work have 

been obtained at three worldwide locations. In all 

cases, different coherent Rayleigh-based phase-

sensitive optical time-domain reflectometers (-

OTDRs) are used. The first dataset is measured 

with a phase-demodulated DAS based on optical 

heterodyne detection, in a 41.5 km-long telecom 

optical cable installed offshore Toulon, France 

[9]. The second dataset comes from a phase 

coherent DAS system connected to an 8.7 km-

long optical cable buried in a trench of 400 m 

depth at a geothermal site near the Brady Hot 

Springs, in Nevada, USA [10]. The last dataset is 

obtained with a chirped-pulse DAS over a 42 km-

long optical fibre installed for offshore monitoring 

a power cable close to Zeebrugge, Belgium [11]. 

These DAS seismic datasets are combined 

with traditional seismic records obtained from the 

STanford Earthquake Dataset (STEAD) [12], 

which contains local earthquakes of different 

magnitudes and locations around the world.  

Fig. 1 shows a comparison between seismic 

waveforms measured with DAS and a traditional 

seismometer. The similitude between traces has 

been the motivation of the approach proposed in 

this paper which uses a hybrid database that 

combines both types of records to attain improved 

earthquake detection deep learning models for 

DAS records. Note that DAS seismic traces are 

usually characterised by very low SNR, as shown 

in Fig. 2. As seen, in this case many traces with 

SNR around 0 dB are included in the processing. 

This denotes a fundamental difference compared 

to seismometer records. Hence, including DAS 

traces in the training is expected to improve the 
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seismic classification performance of trained 

models, as will be shown hereafter.  

Deep learning models for seismic DAS 

In this work, the presence of seismic waves in 

DAS records is detected with the classical deep 

learning paradigms: fully connected artificial 

neural networks (FC-ANN), convolutional neural 

networks (CNN) and recurrent neural networks 

(RNN). In all cases, the input layer is designed to 

receive timeseries of 6000 samples. Meanwhile, 

the output layer is a single node with a Sigmoid 

function that gives the probability of the inputted 

DAS wave being a seismic waveform. Only 

hidden layers are different among the 3 models. 

The implemented FC-ANN model has two 

hidden layers with 4000 and 3000 neurons each 

and a ReLu activation function. The CNN is 

composed of 8 hidden convolutional layers with a 

1x3 kernel size, followed by a ReLu activation 

function and a batch normalisation layer 

(BatchNorm). Max-pooling layers are included to 

reduce the output size of some convolutional 

layers. The last hidden layer is linear and has 32 

neurons. Finally, the third model is a combination 

of convolutional and recurrent networks inspired 

by the CNN-RNN Earthquake Detector (CRED) 

architecture [13]. This has 6 hidden convolutional 

layers with a 1x3 kernel size and ReLu functions, 

followed by 3 recurrent layers and 1 linear layer. 

The recurrent layers correspond to long short-

term memory (LSTM) layers, so this model will be 

here called CNN+LSTM. More details on all these 

3 models can be found in [8].  

Training with hybrid seismic data 

The first training stage uses 200,000 traditional 

seismograph records from the STEAD dataset, 

which are distributed equally between seismic 

and noise waveforms. This leads to trained 

models that will be used as baseline to evaluate 

the performance improvement attained with the 

proposed hybrid training approach. The trained 

models are obtained minimising a binary cross-

entropy loss function and updating the weights of 

the net with the Adam optimisation algorithm. In 

the second training stage, the network weights 

are updated using only DAS data. For all models, 

a conservative learning rate of 10-5 is used with 

an early stopping criterion to avoid overfitting.  

Traditional and DAS seismic records are pre-

processed, including detrending, resampling and 

amplitude normalisation between -1 and 1. This 

leads to 60 s traces with 6000 samples.  

Results 

Fig. 3 shows the F-score metric as a function of 

the classification threshold for the 3 implemented 

models. Dashed lines show the performance of 

the baseline models. These lines indicate that the 

CNN and CNN+LSTM models reach better F-

score over the entire thresholds range, attaining 

a maximum of 96.0% and 93.5%, respectively, 

compared to the 89.9% of the FC-ANN model. On 

the other hand, straight lines in the figure show 

the performance obtained by the models trained 

with the hybrid dataset. It is observed that the 

proposed training improves the performance of 

all 3 analysed models, leading to a maximum F-

score of 97.7%, 97.5% and 99.0% for the CNN, 

CNN+LSTM and FC-ANN models, respectively.  

Results indicate that the largest improvement 

is provided for the FC-ANN model. This can be 

presumably explained by the larger number of 

parameters that are trained in this architecture, 

which allows for a better feature extraction of the 

seismic traces. On the other hand, it is worth 

mentioning that even with a reduced number of 

parameters, both CNN and CNN+LSTM models 

can reach similar (negligibly lower) performance.  

Fig. 4 shows the histograms of the number of 

DAS traces classified as true positive (TP), false 

negative (FN), false positive (FP) and true 

 
Fig. 1: Comparison of seismic records obtained with           

(a) a fibre-optic DAS and (b) a traditional seismometer 

 
Fig. 2: Histogram of SNR distribution of DAS seismic traces 

 
Fig. 3: F-score of baseline (dashed lines) and improved 

(straight lines) deep learning models vs threshold 
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negative (TN), as a function of the measurement 

SNR. The blue bars indicate the number of traces 

classified by the baseline models. Results point 

out that TP and TN, i.e., the correctly classified 

traces, are distributed in a large range of SNRs, 

whilst the FP and FN, corresponding to wrongly 

classified traces, are mostly distributed within low 

SNR levels (< 2 dB in all cases). The red bars in 

Fig. 4 show the results attained with the proposed 

training approach. The large reduction of FP and 

FN verifies that the use of a hybrid training 

improves the performance of the models.  

Note that most traces are already correctly 

classified in all baseline models, leading to an 

accuracy of 89.7% for the FC-ANN, 96.2% for the 

CNN and 93.5% for the CNN+LSTM. These 

values are improved up to 98.8%, 97.7% and 

97.5%, respectively, using the hybrid training.  

Fig. 5 shows the output probability provided 

by each model for the first analysed DAS dataset. 

Fig. 5(a) shows the DAS strain recording as a 

function of time and fibre position. Clear sections 

with no acoustic signal (white coloured sections) 

are observed, which could have resulted from 

poor local strain transfer from the soil to the fibre 

cable. Note that the baseline models (blue curves) 

wrongly classify many of the timeseries measured 

at fibre sections with low strain response (output 

< 1). However, improved models (red curves) can 

successfully classify these traces in most of the 

cases. These results highlight the relevance of 

performing a training that adds DAS traces in the 

process, so that the models can learn from the 

specific features of seismic DAS measurements.  

Conclusions 

The proposed method has proven to improve the 

performance of deep learning models to classify 

earthquakes in low-SNR DAS traces measured 

over optical cables. Even though the improved 

CNN and CNN+LTSM models have resulted in 

slightly lower performance compared to the FC-

ANN model, these former kinds of models are 

usually more suitable to process timeseries 

compared to FC-ANN models. It is therefore 

expected that CNN and CNN+LTSM models are 

more reliable for this kind of tasks, and the use of 

larger DAS datasets with more variety of features 

could still lead to better classification results. 
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Fig. 4: SNR distribution of DAS traces organised according 

to classification metrics. Comparison of baseline and 

improved (a) FC-ANN, (b) CNN, and (c) CNN+LSTM models 

 

Fig. 5: (a) DAS strain as a function of time and fibre position. 

Comparison of output probability for baseline and improved 

(b) FC-ANN, (c) CNN, and (d) CNN+LSTM models 
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