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Abstract We demonstrate narrow-linewidth ultrafast tunable integrated lasers based on 

heterogeneously integrated thin-film lithium niobate on ultra-low loss silicon nitride integrated photonic 

circuits. Using self-injection locking of a hybrid microresonator, we achieve a tuning speed of > 10 peta-

Hertz-per-second. We also perform FMCW LiDAR ranging experiments. © 2022 The Author(s) 

Introduction 

Rapid progress in the domain of thin-film lithium 

niobate integrated photonics resulted in 

demonstration of CMOS-compatible electro-optic 

modulators [1, 2], electro-optic frequency combs 

generation [3] and microwave-optical quantum 

transduction [4]. Photonic circuitry based on 

lithium niobate can also find its application in the 

domain of integrated tuneable lasers [5].  

     Ultra-low noise lasers have been 

demonstrated based on self-injection locking of 

diode lasers to integrated [6] and whispering 

gallery mode [7] optical microresonators with 

ultra-low loss. It was recently demonstrated that 

by using an optical microresonator with piezo-

electrical actuation and stress optical tuning, we 

can endow such a laser with MHz tuning 

bandwidth and GHz frequency excursion, ideal 

for coherent laser-based ranging [8]. 

     However, high tuning linearity and efficiency 

were observed, the frequency bandwidth of laser 

wavelength modulation is inherently limited by 

the excitation of mechanical modes by the 

actuator. Thus, additional stringent phononic 

engineering is required to reach high modulation 

frequencies (up to 10 MHz [8]). In contrast, 

electro-optical actuation does not strongly excite 

mechanical modes of the chip and supports GHz 

bandwidths [1].  

     In this paper, we designed an electro-optically 

tuneable laser source based on the 

heterogeneously integrated lithium niobate on 

Damascene silicon nitride (LNOD) platform [9], 

endowing ultra-low-loss circuits [10] with electro-

optic tunability and demonstrate its potential for 

applications such as frequency modulated 

continuous-wave (FMCW) LiDAR. 

 

Results 

A conceptual representation of the proposed 

tunable laser is given in Fig. 1(a). A distributed-

feedback (DFB) indium phosphide laser is self-

injection-locked to an external LNOD microring 

resonator mode, and the output frequency is 

changed by applying voltage to electrodes placed 

along the resonator circumference. The structure 

of the LNOD waveguide (see Fig. 1(b)) leads to a 

hybrid optical mode that partially penetrates the 

layer of lithium niobate making possible electro-

optic modulation. A high-quality factor for the 

Fig. 1: (a) Schematic of the integrated tunable laser 

source. A DFB laser diode is self-injection locked to a 

high-Q optical mode of a LNOD microring resonator via 

butt-coupling. Rayleigh scattering from 

inhomogeneities in the microring provide the feedback 

to the DFB.  The laser frequency is modulated by 

applying a voltage from an arbitrary waveform 

generator to integrated tungsten electrodes. (b) False-

colored scanning electron microscope image of a 

LNOD waveguide cross-section. 
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LNOD mode is important for achieving wide 

locking bandwidth and pronounced linewidth 

narrowing [11]. Because of the low-loss 

Damascene silicon nitride circuits underneath, 

median intrinsic coupling rate (Fig. 2(a)) is 100 

MHz. That is equivalent to a quality factor of 

2×106. The self-injection-locked state of the laser 

is characterized by locking bandwidth of 1.1 GHz, 

30 dB suppression of the phase noise spectrum 

and intrinsic frequency noise of 3.14 kHz (see 

Fig. 2(c)). 

     The frequency tuning potential of the laser can 

be inferred from Fig. 2(b), where the electro-optic 

response curve is measured by positioning a 

reference laser on the flank of a selected 

resonance and applying a voltage to the 

electrodes with a vector network analyser. The 

small-signal frequency response is flat, showing 

no degradation of modulation efficiency with the 

modulation frequency from 10 kHz to 100 MHz. 

For frequency-modulated continuous wave 

(FMCW) LiDAR [12], linear ramp wavelength 

tuning plays the central role. Thus, we 

characterize this tuning pattern by applying a 

triangular voltage waveform to the 

microresonator electrodes (see Fig. 3(a)). Using 

a 10 MHz of modulation frequency, we achieve a 

laser wavelength tuning rate of 12 PHz/s. The 

chirp nonlinearity at 100 kHz is <1%, and the 

tuning efficiency is 30 MHz/V. 

     As a proof-of-principle demonstration, we 

perform FMCW LiDAR measurements in 

laboratory environment. For scene elements, we 

selected a donut-like polystyrene shape and a 

plastic instrument box. The collected data, after 

processing, is presented as the point clouds in 

Fig. 3(b, c). The evaluated resolution of these 

experiments is 15 cm. 

Conclusions 

By increasing the quality factor of fabricated 

LNOD microresonators and the amount of back-

reflection, it should be possible to increase the 

locking bandwidth and decrease the linewidth. 

Thus, a finer resolution in FMCW ranging 

experiments would be expected. The reflection 

could be increased, for instance, by introducing 

tapers on the lithium niobate layer to enable 

adiabatic transition of the mode of Damascene 

silicon nitride integrated waveguide into the one 

of a LNOD integrated waveguide. This would 

improve the coupling efficiency of light coming 

back to the laser. The tuning efficiency could also 

be improved by optimizing the hybrid LNOD 

waveguide geometry to achieve a higher 

confinement factor in the lithium niobate layer. 

Beyond FMCW LiDAR, the tunable laser source 

demonstrated here could be utilized for optical 

coherence tomography [13] and trace gas 

sensing [14]. 
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simulated thermorefractive noise limit (dash-dotted line), and 
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Fig. 3: (a) (Top row) Time-frequency analysis of triangular laser frequency chirps measured via the heterodyne beatnote between the 

tunable laser and a CW reference laser. (Bottom row) Deviation of measured laser frequency from ideal triangular chirp. (b, c) Point 

clouds, representing a scene composed of a polystyrene donut-like shape and a plastic plane behind, obtained in FMCW LiDAR 

experiments with the tunable laser source. 
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