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Abstract On 10km 200Gb/s per lane IM/DD PAM4 CWDM4 O-band measurements, neural network 

equalization meets Volterra equalization performance with 30% less hardware multiplier complexity. Key 

enabler against strong CD penalties at these reaches/rates is duobinary training. ©2022 The Authors 

Introduction 
For optical short reach use cases like data centre in-
terconnects (DCI) or data centre networks (DCN), 
transceivers must balance objectives of tight foot-
prints, power and cost against rising capacity needs. 
One of the most discussed topics in this field remains 
the question about the better system choice: Inten-
sity-modulated with direct detection (IM/DD) or co-
herent. Although coherent systems allow for much 
higher robustness against channel penalties, global 
sales of PAM4 chipsets should surpass sales of coher-
ent chipsets in 2022 [1]. Further growth, however, is 
more and more hindered by IM/DD’s inherent low 
tolerance to polarization mode dispersion (PMD) and 
even more critical, chromatic dispersion (CD). CD de-
scribes quasi-static, linear phase distortions with 
large memory, arising from varying group velocities 
of different optical frequency components. Square 
law photo-detection turns this linear problem into a 
nonlinear one [2]. CD becomes an increasingly severe 
bottleneck with higher reach and rate.  

In the past, multi-lane coarse wavelength division 
multiplexing (CWDM) proved to be an effective rem-
edy to keep baud rates low with rising payload rates. 
However, scaling beyond 4 parallel lanes, (CWDM4) is 
widely considered ineffective in terms of complex-
ity  [3]. 

This paper discusses one of the most urgent next-
generation IM/DD use cases, 800Gb/s PAM4 O-band 
transmission. Instead of scaling beyond CWDM4, we 
focus on low-complexity digital signal processing 
(DSP) at the receiver (Rx) to enable a higher bitrate 
per lane. Interestingly, already for 100Gb/s per lane 
(400GBASE-LR4), experts predict that CD dispersion 
enforces a reduction of classical Ethernet “LR” reach 
from 10 km to 6 km [4].  

In this paper, 200Gb/s per lane is realized via a line 
rate of 112GBd PAM4, accounting for typical forward 
error correction (FEC) overheads. Our approach to 
compensate for CD distortions is a combination of 
feed forward equalization (FFE) in form of nonlinear 
equalization (NLE) and maximum likelihood sequence 
estimation (MLSE). While low complex MLSE variants 

can tackle CD still effectively enough in combination 
with NLEs, classical Volterra-based NLEs (V-NLEs) be-
come quickly too complex, even without exceeding 
3rd order Volterra components. 

We show that neural network NLEs (NN-NLEs) can 
be a very effective alternative to match performance 
in terms of pre-FEC bit error rate (BER), while saving 
more than 30% of complexity vs. V-NLEs in terms of 
number of multipliers. This is due to NN’s vast and 
flexible parameter space, which may compensate 
channel impairments very accurately. Unlike other 
fields, long training times of NNs is no issue here, 
since NNs can be pre-trained for quasi-static distor-
tions like CD before deployment in an ASIC. A second 
typical challenge of NNs, a lack of training data, does 
not apply here, either, as abundance of optical trans-
mit data can be generated in very short time. With 
these advantages, NN-enabled IM/DD has been stud-
ied in different flavours for a while [5-9] and lately 
even for 200Gb/s per lane PAM4 transmission for 
1km [10] and 2km [11]. In our 10km case, CD be-
comes by far the most dominant distortion.  Our key 
enabler is the introduction of duobinary (DB) training 
targets. DB signalling intentionally introduces con-
trolled inter-symbol interference (ISI) in such a way 
that the resulting signal requires less bandwidth 
(BW) [12]. In combination with FFE, DB can signifi-
cantly reduce BW restrictions and CD. To the best of 
our knowledge, DB training targets have not been 
considered for NN-NLEs before. 
 
Volterra Nonlinear Equalization  
With x(n) and y(n) representing system input and out-
put, respectively, the Pth order discrete time Volterra 
series with Mp memory taps for order p is  [13]: 
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Fig. 1 illustrates a corresponding equalizer config-
uration, which maps current input samples x(n) and 
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historic samples  
x(n-m) as a linear 
combination of 
nonlinear func-
tions (kernels). Im-
plemented as 
such, each pth-or-
der Volterra ker-

nel hp(m1,…,mp) describes all possible combinations 
of a product of p time shifts of the input signal up to 
the memory mp. Pruned versions with reduced kernel 
sets are not considered here.  

The V-NLEs in this paper identify optimal kernels 
in terms of the least squares (LS) error criterion upon 
training data, which are received sequences with 
their known transmitted counterparts [14]. 

According to [13], the number of multipliers for 
V-NLE equals the sum of unique kernels across all or-
ders, with 𝐶𝑀+1

1 unique kernels for first, 𝐶𝑀+1
2 + 𝐶𝑀+1

1  

for second and 𝐶𝑀+1
3 +2𝐶𝑀+1

2 +𝐶𝑀+1
1  for third order,  

 
Neural Network Nonlinear Equalization 

Fig. 2 shows the basic 
processing unit of any 
NN, the artificial neu-
ron. Weights w1,…,wK 
scale the input signals 
x1,…,xK before feeding 
their sum to a nonlin-
ear activation func-
tion. The bias b off-

sets the output. For our NN-NLEs, tanh serves as acti-
vation for initial training and is then replaced by its 
low-cost variant H-tanh for further training as de-
scribed in [15]. H-tanh requires only one hardware 
multiplier and two comparators for clipping.  

 Fig. 3 shows a corresponding equalizer configura-
tion, which maps memory at the input with a tapped 
delay line and then nonlinearities with hidden layers 
(HL) and an output layer, which is chosen as a single 
linear neuron for optimal performance in our case. 
Our HLs are all fully connected. As with V-NLEs, 
pruned subsets are out of scope.  

For identification of our adjustable NN-NLEs pa-
rameters (weights, biases) against CD distortions, we 
apply minibatch backpropagation with ADAM optimi-
zation [16, 17] within numerous iterations (epochs) 

about 50k to 100k 
until convergence.   
The total required 
number of multipli-
ers for a NN-NLE 
with H-tanh activa-
tion function is de-
fined as:  

where d is the number of layers including input and 
output layer and where s = s1|s2|…|sd describes the 
NN design with si neurons in the i-th layer [15]. The 
first sum relates to the number of weights and the 
second sum to the number of H-tanh activations. 

 
Duobinary Training Target  
Classical equalizers model inverse linear/nonlinear 
channel characteristics for compensation. In contrast, 
our training target is not the transmitted data se-
quence directly, but its DB version, which reduces the 
overall signal BW [18]. The advantage is less noise en-
hancement in those high frequency components, 
which suffer the most from channel-induced BW lim-
itations and CD, i.e. those with lowest signal to noise 
ratio. Fig. 4 exemplifies this benefit with actual 
112Gbd measurement data and their corresponding 
power spectral densities (PSD). 

In the top plots of Fig. 4, the green Rx signal spec-
tra are input for both PAM4 equalizers – with classical 
training targets (left) and DB target (right). The blue 
PSDs after equalization reveal much lower relative 
noise enhancements with the DB target (bottom 
right) compared to without (bottom left). While this 
example is based on a V-NLE, it applies equally to NN-
NLE equalization. In practice, changing the training 
target from original transmitted sequences 𝑐𝑛 to their 
DB counterpart 𝑐̃𝑛 means to apply a simple DB filter: 

 𝑐̃𝑛 = 𝑐𝑛 + 𝑐𝑛−1  (4) 

For PAM4, this DB filter turns four modulation lev-
els into seven. The DB filter is only required for train-
ing. For the deployed system, the simplest operations 
to recover PAM-4 symbols from the equalizer output 
is modulo 4 reduction (Mod4) [19].  
Mod4 can be implemented in ASICs without addi-
tional hardware costs, by truncating all bit levels but 
the two least significant bits.  

A more complex, but more effective alternative to 
Mod4 is classical MLSE, which recovers the enforced 
ISI with theoretically best possible performance. 

with            𝐶𝑚
𝑝
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Fig. 2: Artificial neural network 

with tanh and H-tanh activation 

 

Fig. 3: NN nonlinear equalizer 

 
Fig. 1: Volterra nonlinear equalizer 

 
Fig. 4: Measured power spectral densities of Rx signals for  

PAM4 (left top) and DB-PAM4 (right top) before and after 

V-NLE equalization with noise enhancements (bottom) 
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Experimental setup  
Fig. 5 depicts the IM/DD measurement setup and off-
line DSP of our 10 km PAM4 transmission with 
112 Gbd per lane. 3 dB BWs are mentioned below 
each electro/optical component.  

At the transmitter (Tx), pseudorandom binary se-
quences (PRBS) are Gray-mapped to PAM-4 symbols 
and pulse-shaped with a raised cosine filter with a roll 
off factor of 0.14. After resampling, the sequences 
match the 120 GS/s arbitrary waveform generator 
(AWG), which converts to analog signals. A 60 GHz 
driver amplifier (DA) amplifies towards O-band Mach 
Zehnder modulation (MZM). While the focus are 
standard O-band CWDM4 wavelengths 1270nm, 
1290m, 1310nm and 1330nm [20] as illustrated in 
Fig. 5 (a), further captures at in-between wave-
lengths allow for better insights of the perfor-
mance/wavelength relationship. 

After 10 km transmission over standard single 
mode fiber (SSMF), a variable optical attenuator 
(VOA) controls the received optical power (ROP) at 
the input of a Praseodymium-doped fiber amplifier 
(PDFA). An optical filter suppresses the broadband 
noise of the PDFA. Fig. 5 (b) shows good noise sup-
pression without cutting the optical signal spectrum.  

The filtered optical signal is fed to a photo diode 
(PD) and its electrical output is digitized at 256 GS/s 
by a real time digital oscilloscope. The ROPs at the 
PDFA input were tuned to yield approximately 7 dBm 
optical power at the PD for optimal performance.  

The offline Rx DSP starts with resampling and tim-
ing recovery. Equalization is done under one sample 
per symbol signalling. Fig. 5 (c) shows histograms of 
the received PRBS data before and after DB-targeted 
equalization. MLSE with Euclidian distance metric and 
complexity-optimized memory length of only 1 or 
Mod 4 DB recovery is applied to the equalizer outputs 
before BERs are counted.  

Results 
Fig. 6 presents pre-FEC BERs vs. wavelengths. Accu-
mulated CD values for 10 km, as defined in [20], are 
added to the x-axis. Data sets for BER estimation were 

strictly separated from those for training of parame-
ters (kernel coefficients for V-NLEs and weights/bi-
ases for NN-NLEs).  

Fig. 6 presents three DSP configurations, linear 
equalization (LE) in green color, V-NLE with 
[1st,2nd,3rd] order memory taps in blue and NN-NLE in 
red. Space restrictions allow only to show a subset of 
vast sweep studies regarding memory taps for LE and 
V-NLE and number of hidden layers and neurons per 
layer for NN-NLEs. All results included in Fig. 6 opti-
mize performance vs. complexity, meaning more 
complex variants improve results only insignificantly.  

Dotted lines represent classical training for LE and 
V-NLE, dashed lines DB training with Mod4 and solid 
lines with added MLSE. Massive DB gains are obvious. 
Depending on the FEC in use, MLSE might be optional. 
For 800Gb/s IM/DD at 10 km, many FEC options are 
still under discussion [21]. The NN-NLE architecture 
21|11|7|1 matches the pre-FEC BER performance of 
V-NLE [21/9/7], but requires only 334 hardware mul-
tipliers instead of 486 for V-NLE, thus >30% less.  

Conclusion  
This paper presents Rx DSP options for 10km IM/DD 
CWDM4 transmission with 200Gb/s per lane. With a 
duobinary training target, NN-NLEs match V-NLE per-
formance with more than 30% complexity reduction 
in hardware multipliers.  

 
Fig. 5: Experimental 10km setup with DSP. Inset (a) shows classical CWDM4 O-band wavelengths, (b) optical spectra be-

fore and after optical filtering and (c) DB-targeted PAM4 equalization input and output with its seven modulation levels 

 

Fig. 6: Linear equalization (LE) vs. V-NLE vs. NN-NLE  

with and without DB target, with and without MLSE  
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