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Abstract We introduce a third-party confidentiality-preserving machine learning scheme for soft-failure
detection leveraging the robustness of the principal components algorithm to the changes in the rotation
of the data axis. We demonstrate that random scrambling of the data is effective to hide sensitive
telemetry information.

Introduction

With the increase of communication network
complexity, intelligent monitoring systems play
an important role in Network Management. In
most approaches, machine learning (ML) algo-
rithms are the first attempt to ensure high per-
formance in evaluating the integrity of commu-
nication networks, which leads to the collection
of an enormous volume of telemetry data, bring-
ing concerns on the data security, privacy and
confidentiality-preservation[1],[2],[3],[4].

In the context of optical communication, phys-
ical encryption have been seen as a means to
ensure security of in-flight data in the transport
layer[5]. Optical encryption, for instance, exploits
the coherent nature of the laser beams. A com-
mon technique is based on the phase modulation
of light beams using the direct superposition of
phase masks containing the original data and an
encrypting phase key[5]. Implemented as a ser-
vice, optical encryption can be seen as a pro-
tocol agnostic solution which allows the config-
uration of several other protocols on the top of
it running out-of-band without system overhead.
Similarly, in the control and management plane,
concerns may raise when data are elaborated by
a third-party AI/ML algorithm provider. Indeed,
optical network disaggregation may enable third-
party telemetry-driven analytics services thanks
to open YANG models[6]. In this specific case,
network providers might not want to reveal their
devices performance to preserve confidentiality.

For this purpose, based on the works de-
scribed in[7],[8],[9], we propose a further step to-
wards confidentiality-preserving failure detection
models, implementing a steganography solution
for applications of soft-failure detection in optical
networks. Leveraging the linear properties of the

widely-known principal component analysis tech-
nique (PCA)[10], we demonstrate how to trans-
mit telemetry data from an optical system to un-
trusted third-party cloud computing resources for
analysis, without revealing sensitive spatial geom-
etry information contained in the data. This work
will help reducing the security and confidentiality
concerns that arise with the deployment of on-
cloud processing solutions for network condition
assessment and prognostics.

Background
Principal components analysis (PCA) is a classi-
cal multivariate statistical procedure that aims to
estimate a linear static relationship between the
data in its input space and a small unknown num-
ber of latent variables that retain most of the vari-
ance in the data[10]. Although PCA has been used
for several different purposes, varying from fea-
ture extraction to manifold learning, here we apply
the technique in a fashion for failure detection.

Assuming the training data matrix X ∈ Rn×m is
composed of m telemetry parameters collected n

times from several different network devices un-
der normal working conditions, X can be decom-
posed into X = TUT , where T is called the scores
matrix and U is a set of m orthogonal vectors,
also called the loadings matrix (analogous to the
eigenvectors). This method allows to perform an
orthogonal transformation by retaining only the
principal components d (≤ m), also known as
the number of factors. Choosing only the first
d eigenvectors, the final matrix can be rewritten
without significant loss of information in the form
of X̂ = TdUT

d + E, and therefore reconstructing
the original input data matrix. In this case, E is
the residual matrix resulting from the d factors.

Using only the principal components and
adopting measurement collected under normal
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Fig. 1: (a) Reference scenario with and without data preservation; (b) Reference Optical Network Topology

or failure conditions, the analytic operations are
performed using the main orthogonal vectors Ud.
Since the orthogonal vectors have been learned
to map only telemetry data from normal working
conditions, in the case of data under failure condi-
tion, the residual error will grow proportionally to
the level of discrepancy between the failure condi-
tion and the normal state learned during training,
allowing the direct detection of soft-failures.

Telemetry Data Confidentiality

Relying on a key property of PCA, we observed
that the ordering of the measurement instances
has no effect on the resulting calculation of the
principle components and principle directions.
This can be exploited to achieve confidentiality
preservation, by reshuffling the telemetry data.

Finding the correct spatial ordering of a set of
collected measurements is analogous to trying to
correctly reassemble a common jigsaw puzzle.
The work in[11] showed that this problem falls into
the NP-complete class, and is therefore an unfea-
sible problem to be optimally solved computation-
ally, with no efficient algorithm available up to this
date. Thus, the scrambling order acts as a secret
key that allows proper reconstruction of a dataset.

For a clear illustration, a simple scrambling op-
eration over matrix X could involve the random
swapping of its rows using a function [X̃n, idn] =

scramble (X, n), where n indicates a random
swapping of entire rows of the given matrix. A
different but also effective operation could be the
random swapping of columns using [X̃m, idm] =

scramble (X,m), where m denotes the random
swapping of entire columns. Apart from return-
ing a scrambled version of the input dataset, this
swapping function also keeps a vector id with the
correct order of the data in the training matrix that

works as an encryption key holded by the data
owner or manager. Whenever necessary this un-
scrambling vector can be used to rearrange the
matrix to its original form.

Applying the PCA technique over X̃n or X̃m re-
sults in the same manifold space but with differ-
ent rotations. This further implies that a deployed
monitoring system can send spatially-scrambled
data to a third-party cloud service to perform fail-
ure detection via PCA without any concern for the
spatial information associated with the structure
being revealed. A similar result holds for shuffling
the data using both approaches, whose difference
still in the rotation of the learned manifold space.

Fig. 1 shows the reference scenario of appli-
cation for the proposed solution. In particular,
starting from the monitoring framework proposed
in[12], two scenarios are considered: the case
without data preservation (on the left) and the
case with data preservation (on the right). In both
cases the PCA algorithm runs in third-party loca-
tion, different with the operator premises, where
the telemetry data is collected. If no data preser-
vation is applied, the telemetry data are sent
transparently to the ML algorithm, subscribed to
the monitoring topic. In the second case, the data
preservation plugin is involved, applying the data
scrambling and later the descrambling. In both
cases, the intelligence block receives the failure
detection information, being able to perform the
proper operations in the network.

Evaluation and results

Fig. 2 shows the performance of the proposed ap-
proach in terms of data reconstruction and failure
detection while Fig. 3 shows with the confusion
matrix for both baseline and scrambled data. The
dataset is a smaller version of the one introduced
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(a)

(b)
Fig. 2: Model reconstruction and failure detection for the

baseline (a) and scrambled (b) data.

(a)

(b)
Fig. 3: Confusion matrix: baseline (a), scrambled (b) data.

in[7]. It has been collected from the multi-span
link topology shown in Fig. 1b and includes the
metrics related to the traversed devices (input and
output power levels of the amplifiers and the co-
herent data at the RX). The ingress WSS is used
to variate the power level entering in the transmis-

sion system. The dataset consists of two phases.
In the training phase (portion of data before the
vertical line in Fig. 2) the key parameters are ob-
served in normal conditions, with no failures. The
second phase (portion of data after the vertical
line in Fig. 2) introduces soft failures, obtained
by adding 10dB attenuation at the WSS, impact-
ing the input power of Ampli1 (A1 in Fig. 1b). All
the EDFA present a mute power of 0.4dBm, thus
the input power variation is observed only at A1.
By considering the training part in the top row
of Fig. 2a, the model adequately reproduces the
normal pattern of the system, which is corrobo-
rated by the small values of the mean squared
error for the training data. In the test data, the
model does not reach the same performance level
in reconstruction for the part of data related to soft
failures. At the bottom line of Fig. 2a the failure
indicators are shown with red circles indicating
the samples collected under failure conditions. In
Fig. 2b, the same behavior for the reconstructed
data and the failure indicators is applied together
with the data confidentiality, where the samples
are randomly scrambled and normalized.

Although the data is scrambled, the goal is to
maintain the same failure detection accuracy as
for the dataset without data confidentiality. To
check the correspondence between a detected
soft failure and the actual condition of the sys-
tem the confusion matrix is presented in Fig. 3.
Comparing the values at the main diagonal of
the confusion matrix for both baseline and scram-
bled datasets (which is the global accuracy of the
model) one can verify that the performance is ex-
actly, with a solid 91.15% of accuracy in the pre-
dictions which confirms that our approach ensure
the same level of performance as for the baseline
data.

Conclusions

This work introduced an extended confidentaility-
preserving unsupervised ML approach capable to
detect soft failures in optical networks with high
accuracy. The technique aims at performing sim-
ple scrambling operations in the collected data
and extrapolate inner properties of a well-known
ML technique to reach the same level of accuracy
as in the using the original dataset without any
scrambling. The proposed solution, when applied
to large datasets, ensures data confidentiality for
the data owner allowing the data usage by third-
party cloud services.
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