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Abstract We showcase a proof-of-concept demonstration of a ML pipeline for real-time traffic 

forecasting deployed on a passive optical access network using an XGS-PON compatible telemetry 

framework. The demonstration reveals the benefits of fine-granular telemetry streaming for QoS 

monitoring and adaptive capacity adjustment of end-customers. ©2022 The Author(s)

Introduction 

Current optical transport networks are becoming 

increasingly larger and more complex due to the 

constantly growing number of online users, 

traffic-generating user applications, and network 

devices interconnected to offer and support this 

dramatic growth. As a consequence of this 

evolution, the underlying front-, mid- and 

backhaul networks are expected to become even 

larger in the future, subsequently leading to a 

sharp increase in the number of network 

equipment units (often referred to as network 

elements (NE)) to be managed and monitored at 

all topology levels, including both, data- and 

optical planes [1]. As such, in order to ensure a 

high quality of transmission (QoT), locate and 

resolve network failures [2-4], detect anomalies 

[5] or equipment faults [6], as well as prevent 

traffic congestion and bottlenecks by applying 

throughput capacity adjustment [7] at a large 

scale and high network complexity, the future 

optical networks must support fully automated 

network management system (NMS) solutions. 

Apart from that, the current tendency towards 

network automation and development of next 

generation intelligent networking systems are 

only feasible when having full access to the 

monitoring data characterizing the network 

behaviour under different operational conditions 

and traffic intensities [8]. These objectives can 

only be achieved by collecting data from a variety 

of NE sources at various time granularities, while 

also extracting knowledge and deriving insight for 

performance monitoring, troubleshooting, and 

maintenance of network service continuity [9]. 

In this work, we perform a live demonstration 

of a Telemetry Framework and Machine Learning 

(ML) Pipeline running on an XGS-PON testbed 

located at Fraunhofer HHI premises in Berlin. The 

developed solution complies with the 

specifications laid down in the telemetry work 
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item of the European Telecommunication 

Standards Institute (ETSI) Industry Specifications 

Group (ISG) Fifth Generation Fixed Network 

(F5G) [10]. 

The novel contributions of our demonstration 

are fourfold: 1) definition and development of a 

full telemetry streaming procedure for PONs, 

which includes the mapping between a PON 

structure and the functional blocks of the 

framework (e.g., broker, database, inference 

host) and their interfaces; 2) development of a 

ML-assisted traffic forecasting model that follows 

traffic variations in the order of 10-15 seconds 

with high accuracy; 3) incorporation of a ML 

inference host to the telemetry workflow for real-

time prediction and analysis; and 4) 

implementation of a cloud-native version of the 

whole pipeline in which every individual block 

runs in a dedicated Docker container that allows 

easier deployment and automation. We will 

perform live demonstration of the whole solution 

running on the F5G testbed using XGS-PON. 

Concept of End-to-End Network Telemetry 

End-to-end (E2E) network telemetry [11,12] is a 

technology of remotely collecting device- and 

network-related data from the physical or virtual 

network components, using a set of automated 

processes aiming to guide network policy 

updates for planning, dynamic allocation and 

optimization of network resources, identification 
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Fig. 1: Subscription and streaming of telemetry data. 
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of service degradation, and quick localization of 

equipment failures and link downtimes [9]. In 

traditional monitoring techniques, which are 

preponderantly based on protocols such as 

SNMP, data is constantly queried (pulled) by the 

NMS from the NEs, incurring low data rates and 

high processing overhead – drawbacks 

incompatible with current automatic network 

applications. As a result, telemetry has emerged 

as a solution to automate network monitoring, in 

which the NMS subscribes to the NEs, which in 

turn stream their state, operation and/or 

configuration data proactively in a push mode. 

The telemetry system/management platform 

consists of two main components [10]: the 

telemetry controller, responsible for telemetry 

setup and configuration on the NE side, and the 

telemetry collector, acting as a sink and storage 

of the streamed telemetry data. Worth noting is 

that the telemetry management system acts as a 

telemetry client subscribed to the telemetry 

server represented by the NE (Fig. 1). In this data 

acquisition scheme, one subscription packet 

typically carries multiple pieces of sampled data 

produced by different sources of the same 

network, and aggregated within one telemetry 

package, describing device and network 

operation parameters. The data is typically 

normalized and encoded efficiently using both, 

human readable formats (e.g., XML, JSON), but 

most commonly binary formats such as Google 

Protocol Buffers (Protobuf) for an efficient and 

automatic mechanism of data serialization for 

limited bandwidth utilization, reduced storage 

and fast transmission rates [13]. As such, both 

the telemetry and configuration data have model-

based formats, allowing applications to configure 

and consume data easily. In this respect, the 

configuration data transmitted from the telemetry 

controller to the NE is often modelled using open-

source and proprietary YANG data models, and 

is carried over the wire using the SSH-based 

NETCONF protocol with its XML-encoded data 

format [14]. On the other hand, the streamed 

telemetry data is commonly carried using the 

UDP or gRPC transport/streaming protocols, 

while encoded using predefined JSON or 

Protobuf model-based encoding formats [14]. 

F5G OpenLab Testbed Architecture 

The optical access network testbed is a XGS-

PON consisting of an optical line terminal (OLT), 

to which a group of optical network 

terminals/units (ONTs/ONUs) are linked optically 

through an optical splitter, sharing the same 

XGS-PON interface (Fig. 2). Different end-user 

devices are then connected to the ONTs through 

traditional 10G Ethernet interfaces, where the 

E/O conversion is carried out. These devices 

include fixed, thermal and pan-tilt-zoom (PTZ) 

cameras, laptops for simulation of video 

streaming services, and a traffic generator for 

generation of traffic flows of different nature and 

intensity. All end-points are configured to be part 

of the same VLAN, thus forming the data plane 

(the blue links in Fig. 2). 

The OLT is also connected through a 

management interface to a LAN, constituting the 

management plane (red connections in Fig. 2). 

To the same LAN are also interconnected a 

management terminal and an Ubuntu telemetry 

server, on which the entire ML pipeline, 

discussed in more detail in the next section, runs. 

When it comes to the protocol stack and data 

models, it is worth noting that the entire telemetry 

functionality is configured on the OLT through the 

NETCONF protocol using different YANG 

modules. Among these can be found such open-

source models as openconfig-telemetry.yang 

[15], whereas the configuration of specific 
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Fig. 2: The XGS-PON Optical Access Network testbed in the OpenLab facility. 

Tu2.5 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision



telemetry functions, such as the type of streamed 

parameters (e.g., traffic volume or data rate), the 

source of telemetry data, i.e., whether the data is 

produced by one of the OLT’s or ONT’s sensors, 

generally require the proprietary YANG models of 

the hardware vendor. Finally, the configurations 

are carried out and visualized on the terminal PC. 

Real-Time ML/Telemetry Pipeline POC 

Our demonstration is carried out on the XGS-

PON network testbed discussed in the previous 

section (Fig. 2). For demonstration purposes, the 

telemetry data characterizing the traffic flows on 

the shared XGS-PON interface is fetched from 

the corresponding OLT sensor. These flows 

represent an aggregate of different smaller traffic 

streams generated by the individual end devices 

connected to their corresponding ONTs. As such, 

the OLT streams its telemetry data including such 

traffic-related parameters as the number of TX 

and RX bytes, number of TX and RX packets, 

reception and transmission data rates, etc. With 

its minimal sampling period/telemetry data 

granularity of 5s, the OLT transmits the telemetry 

data encoded as Protobuf binary messages. 

These events enter the ML/telemetry pipeline 

through a customized Kafka producer written in 

Python (Fig. 3), whose main purpose is the 

Protobuf – JSON format conversion for a human 

readable data formatting, followed by topic 

initialization within the Kafka broker. Apache 

Kafka is a popular open-source distributed event 

streaming platform for high-performance data 

pipelines, streaming analytics and data 

integration [16], which has found its successful 

application relatively recently in telemetry of 

optical transport networks [11,12]. Its main 

component, the Kafka broker, is a distributed 

publish-subscribe event storage system and a 

robust queuing mechanism, capable to handle 

high volumes of data by organizing streaming 

events into topics, partitions and offsets. In our 

demonstration, a single topic is dedicated to a 

single source of telemetry data (i.e., sensor), and 

for simplicity, the topic consists of one partition 

only stored on a single broker (Fig. 3). In this 

setting, the events originating from the same 

source/sensor are written in the same Kafka 

topic. As the next step in data propagation 

through the telemetry pipeline, events are 

consumed by the Telegraf module, which is an 

agent for metrics, events and logs collection and 

reporting [17], and acts in our setting as a Kafka 

consumer. Its main purpose resumes to format 

conversion of the incoming events (JSON) into 

Line Protocol (LP) entries for their subsequent 

publication into the TSDB. Finally, the converted 

telemetry events are stored within the InfluxDB – 

a TSDB specifically designed and optimized for 

storage, retrieval and serving of time-stamped 

data, i.e., associated pairs of values and times 

[18] – the de-facto format of telemetry data. In this 

context, the InfluxDB serves as the telemetry 

data collector from which the ML inference host 

retrieves its data for the subsequent data 

analytics and traffic prediction tasks. 

The ML inference host includes a ML 

forecasting model, a ML model repository and an 

input/output module. The model repository stores 

the model artifacts/hyperparameters which are 

used by the forecasting model for making 

predictions. The input/output module clients 

connect to the TSDB of the telemetry pipeline to 

query data for the forecasting model, and after 

the prediction procedure, to insert the predictions 

back into the TSDB for storage (Fig. 3). Finally, 

we use a Grafana module interfaced to the 

InfluxDB for fetching and display of telemetry 

data and the forecasting of the ML inference host. 

Conclusions 

The proposed telemetry workflow and ML 

pipeline offers great advantages for full 

automation of F5G network fabric. Our future 

activities focus on exploring new use-cases and 

their performance evaluation. 
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Fig. 3: The ML pipeline architecture with its containerized components. 
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