
Demonstration of a Real-Time ML Pipeline for Traffic
Forecasting in AI-Assisted F5G Optical Access Networks

Mihail Balanici*, Geronimo Bergk*, Pooyan Safari*, Behnam Shariati*,

Johannes Karl Fischer, and Ronald Freund

Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin,

Germany (Email: mihail.balanici@hhi.fraunhofer.de)

Abstract We showcase a proof-of-concept demonstration of a ML pipeline for real-time traffic

forecasting deployed on a passive optical access network using an XGS-PON compatible telemetry

framework. The demonstration reveals the benefits of fine-granular telemetry streaming for QoS

monitoring and adaptive capacity adjustment of end-customers. ©2022 The Author(s)

Introduction

Current optical transport networks are becoming

increasingly larger and more complex due to the

constantly growing number of online users,

traffic-generating user applications, and network

devices interconnected to offer and support this

dramatic growth. As a consequence of this

evolution, the underlying front-, mid- and

backhaul networks are expected to become even

larger in the future, subsequently leading to a

sharp increase in the number of network

equipment units (often referred to as network

elements (NE)) to be managed and monitored at

all topology levels, including both, data- and

optical planes [1]. As such, in order to ensure a

high quality of transmission (QoT), locate and

resolve network failures [2-4], detect anomalies

[5] or equipment faults [6], as well as prevent

traffic congestion and bottlenecks by applying

throughput capacity adjustment [7] at a large

scale and high network complexity, the future

optical networks must support fully automated

network management system (NMS) solutions.

Apart from that, the current tendency towards

network automation and development of next

generation intelligent networking systems are

only feasible when having full access to the

monitoring data characterizing the network

behaviour under different operational conditions

and traffic intensities [8]. These objectives can

only be achieved by collecting data from a variety

of NE sources at various time granularities, while

also extracting knowledge and deriving insight for

performance monitoring, troubleshooting, and

maintenance of network service continuity [9].

In this work, we perform a live demonstration

of a Telemetry Framework and Machine Learning

(ML) Pipeline running on an XGS-PON testbed

located at Fraunhofer HHI premises in Berlin. The

developed solution complies with the

specifications laid down in the telemetry work

* These authors have equally contributed to this work.

item of the European Telecommunication

Standards Institute (ETSI) Industry Specifications

Group (ISG) Fifth Generation Fixed Network

(F5G) [10].

The novel contributions of our demonstration

are fourfold: 1) definition and development of a

full telemetry streaming procedure for PONs,

which includes the mapping between a PON

structure and the functional blocks of the

framework (e.g., broker, database, inference

host) and their interfaces; 2) development of a

ML-assisted traffic forecasting model that follows

traffic variations in the order of 10-15 seconds

with high accuracy; 3) incorporation of a ML

inference host to the telemetry workflow for real-

time prediction and analysis; and 4)

implementation of a cloud-native version of the

whole pipeline in which every individual block

runs in a dedicated Docker container that allows

easier deployment and automation. We will

perform live demonstration of the whole solution

running on the F5G testbed using XGS-PON.

Concept of End-to-End Network Telemetry

End-to-end (E2E) network telemetry [11,12] is a

technology of remotely collecting device- and

network-related data from the physical or virtual

network components, using a set of automated

processes aiming to guide network policy

updates for planning, dynamic allocation and

optimization of network resources, identification

Telemetry

Controller

Telemetry

Collector

Telemetry Management Platform

Network Element

Configuration Protocol:

NETCONF

Subscription Protocol:

gRPC

Streaming Protocol:

UDP, gRPC

Encoding Format:

XML, JSON, GPB

Fig. 1: Subscription and streaming of telemetry data.

Tu2.5 European Conference on Optical Communication (ECOC) 2022 ©
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

mailto:mihail.balanici@hhi.fraunhofer.de

of service degradation, and quick localization of

equipment failures and link downtimes [9]. In

traditional monitoring techniques, which are

preponderantly based on protocols such as

SNMP, data is constantly queried (pulled) by the

NMS from the NEs, incurring low data rates and

high processing overhead – drawbacks

incompatible with current automatic network

applications. As a result, telemetry has emerged

as a solution to automate network monitoring, in

which the NMS subscribes to the NEs, which in

turn stream their state, operation and/or

configuration data proactively in a push mode.

The telemetry system/management platform

consists of two main components [10]: the

telemetry controller, responsible for telemetry

setup and configuration on the NE side, and the

telemetry collector, acting as a sink and storage

of the streamed telemetry data. Worth noting is

that the telemetry management system acts as a

telemetry client subscribed to the telemetry

server represented by the NE (Fig. 1). In this data

acquisition scheme, one subscription packet

typically carries multiple pieces of sampled data

produced by different sources of the same

network, and aggregated within one telemetry

package, describing device and network

operation parameters. The data is typically

normalized and encoded efficiently using both,

human readable formats (e.g., XML, JSON), but

most commonly binary formats such as Google

Protocol Buffers (Protobuf) for an efficient and

automatic mechanism of data serialization for

limited bandwidth utilization, reduced storage

and fast transmission rates [13]. As such, both

the telemetry and configuration data have model-

based formats, allowing applications to configure

and consume data easily. In this respect, the

configuration data transmitted from the telemetry

controller to the NE is often modelled using open-

source and proprietary YANG data models, and

is carried over the wire using the SSH-based

NETCONF protocol with its XML-encoded data

format [14]. On the other hand, the streamed

telemetry data is commonly carried using the

UDP or gRPC transport/streaming protocols,

while encoded using predefined JSON or

Protobuf model-based encoding formats [14].

F5G OpenLab Testbed Architecture

The optical access network testbed is a XGS-

PON consisting of an optical line terminal (OLT),

to which a group of optical network

terminals/units (ONTs/ONUs) are linked optically

through an optical splitter, sharing the same

XGS-PON interface (Fig. 2). Different end-user

devices are then connected to the ONTs through

traditional 10G Ethernet interfaces, where the

E/O conversion is carried out. These devices

include fixed, thermal and pan-tilt-zoom (PTZ)

cameras, laptops for simulation of video

streaming services, and a traffic generator for

generation of traffic flows of different nature and

intensity. All end-points are configured to be part

of the same VLAN, thus forming the data plane

(the blue links in Fig. 2).

The OLT is also connected through a

management interface to a LAN, constituting the

management plane (red connections in Fig. 2).

To the same LAN are also interconnected a

management terminal and an Ubuntu telemetry

server, on which the entire ML pipeline,

discussed in more detail in the next section, runs.

When it comes to the protocol stack and data

models, it is worth noting that the entire telemetry

functionality is configured on the OLT through the

NETCONF protocol using different YANG

modules. Among these can be found such open-

source models as openconfig-telemetry.yang

[15], whereas the configuration of specific

Telemetry Server

 Management Plane

Data Plane

Fiber

Ethernet

Management

Terminal

Fixed Camera

Thermal Camera

Fixed Camera

PTZ Camera

Traffic Generator

Video Streaming Server

Video Streaming Client

ONT 1

ONT 2

ONT 3

ONT 4

ONT 5

ONT 6

ONT 7

OLT

Fig. 2: The XGS-PON Optical Access Network testbed in the OpenLab facility.

Tu2.5 European Conference on Optical Communication (ECOC) 2022 ©
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

telemetry functions, such as the type of streamed

parameters (e.g., traffic volume or data rate), the

source of telemetry data, i.e., whether the data is

produced by one of the OLT’s or ONT’s sensors,

generally require the proprietary YANG models of

the hardware vendor. Finally, the configurations

are carried out and visualized on the terminal PC.

Real-Time ML/Telemetry Pipeline POC

Our demonstration is carried out on the XGS-

PON network testbed discussed in the previous

section (Fig. 2). For demonstration purposes, the

telemetry data characterizing the traffic flows on

the shared XGS-PON interface is fetched from

the corresponding OLT sensor. These flows

represent an aggregate of different smaller traffic

streams generated by the individual end devices

connected to their corresponding ONTs. As such,

the OLT streams its telemetry data including such

traffic-related parameters as the number of TX

and RX bytes, number of TX and RX packets,

reception and transmission data rates, etc. With

its minimal sampling period/telemetry data

granularity of 5s, the OLT transmits the telemetry

data encoded as Protobuf binary messages.

These events enter the ML/telemetry pipeline

through a customized Kafka producer written in

Python (Fig. 3), whose main purpose is the

Protobuf – JSON format conversion for a human

readable data formatting, followed by topic

initialization within the Kafka broker. Apache

Kafka is a popular open-source distributed event

streaming platform for high-performance data

pipelines, streaming analytics and data

integration [16], which has found its successful

application relatively recently in telemetry of

optical transport networks [11,12]. Its main

component, the Kafka broker, is a distributed

publish-subscribe event storage system and a

robust queuing mechanism, capable to handle

high volumes of data by organizing streaming

events into topics, partitions and offsets. In our

demonstration, a single topic is dedicated to a

single source of telemetry data (i.e., sensor), and

for simplicity, the topic consists of one partition

only stored on a single broker (Fig. 3). In this

setting, the events originating from the same

source/sensor are written in the same Kafka

topic. As the next step in data propagation

through the telemetry pipeline, events are

consumed by the Telegraf module, which is an

agent for metrics, events and logs collection and

reporting [17], and acts in our setting as a Kafka

consumer. Its main purpose resumes to format

conversion of the incoming events (JSON) into

Line Protocol (LP) entries for their subsequent

publication into the TSDB. Finally, the converted

telemetry events are stored within the InfluxDB –

a TSDB specifically designed and optimized for

storage, retrieval and serving of time-stamped

data, i.e., associated pairs of values and times

[18] – the de-facto format of telemetry data. In this

context, the InfluxDB serves as the telemetry

data collector from which the ML inference host

retrieves its data for the subsequent data

analytics and traffic prediction tasks.

The ML inference host includes a ML

forecasting model, a ML model repository and an

input/output module. The model repository stores

the model artifacts/hyperparameters which are

used by the forecasting model for making

predictions. The input/output module clients

connect to the TSDB of the telemetry pipeline to

query data for the forecasting model, and after

the prediction procedure, to insert the predictions

back into the TSDB for storage (Fig. 3). Finally,

we use a Grafana module interfaced to the

InfluxDB for fetching and display of telemetry

data and the forecasting of the ML inference host.

Conclusions

The proposed telemetry workflow and ML

pipeline offers great advantages for full

automation of F5G network fabric. Our future

activities focus on exploring new use-cases and

their performance evaluation.

Acknowledgements

This work was partly funded by the German

Ministry of Education and Research (BMBF) in

the framework of the project AI-NET PROTECT

(KIS8CEL010, FKZ 16KIS1282).

ONT

1

ONT

2

ONT

3

ONT

7

. . .

OLT

Python

Kafka

Producer

Kafka

Broker

Topic_ONT1

Topic_ONT2

Topic_ONT3

Topic_OLT Meas._OLT

Meas._ONT1

Meas._ONT2

Meas._ONT3

Telegraf InfluxDB

ML

Inference

Host
Grafana

End-to-End Telemetry Pipeline

Fig. 3: The ML pipeline architecture with its containerized components.

Tu2.5 European Conference on Optical Communication (ECOC) 2022 ©
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

References

[1] L. Gifre, and F. Boitier, “Role of monitoring and analytics
in next generation optical networks (Invited),”
Proceedings of European Conference on Optical
Communication, 2021.
DOI: 10.1109/ECOC52684.2021.9605997.

[2] A. P. Vela, B. Shariati, M. Ruiz, F. Cugini, A. Castro, H.
Lu, R. Proietti, J. Comellas, P. Castoldi, S. J. B. Yoo, and
L. Velasco, "Soft Failure Localization During
Commissioning Testing and Lightpath Operation,"
Journal of Optical Communications and Networking, vol.
10, no. 1, pp. A27-A36, 2018.
DOI: 10.1364/JOCN.10.000A27.

[3] K. S. Mayer, J. A. Soares, R. P. Pinto, C. E. Rothenberg,
D. S. Arantes, and D. A. A. Mello, “Machine-learning-
based soft-failure localization with partial software-
defined networking telemetry,” Journal of Optical
Communications and Networking, vol. 13, no. 10, pp.
E122-E131, 2021. DOI: 10.1364/JOCN.424654.

[4] F. Paolucci, A. Sgambelluri, M. Dallaglio, F. Cugini, and
P. Castoldi, “Demonstration of gRPC telemetry for soft
failure detection in elastic optical networks,” Proceedings
of European Conference on Optical Communication,
2017. DOI: 10.1109/ECOC.2017.8346066.

[5] S. Nam, J. Lim, J. H. Yoo, and J. W. K. Hong, “Network
anomaly detection based on in-band network telemetry
with RNN,” Proceedings of IEEE International
Conference on Consumer Electronics-Asia, 2020. DOI:
10.1109/ICCE-Asia49877.2020.9276768.

[6] J. Kundrat, M. Vasko, R. Krejci, V. Kubernat, T. Pecka, O.
Havlis, M. Slapak, J. Jedlinsky, and J. Vojtech, “Opening
up ROADMs: streaming telemetry [Invited],” Journal of
Optical Communications and Networking, vol. 13, no. 10,
pp. E81-E93, 2021. DOI: 10.1364/JOCN.425167.

[7] L. Velasco, S. Barzegar, F. Tabatabaeimehr, and M. Ruiz,
“Intent-based networking and its application to optical
networks [Invited Tutorial],” Journal of Optical
Communications and Networking, vol. 14, no. 1, pp. A11-
A22, 2022. DOI: 10.1364/JOCN.438255.

[8] D. Rafique and L. Velasco, “Machine learning for network
automation: overview, architecture, and applications
[Invited Tutorial],” Journal of Optical Communications and
Networking, vol. 10, no. 10, pp. D126-D143, 2018. DOI:
10.1364/JOCN.10.00D126.

[9] C. Delezoide, P. Ramantanis, L. Gifre, F. Boitier, and P.
Layec, “Field trial of failure localization in a backbone
optical network,” Proceedings of European Conference
on Optical Communication, 2021.
DOI: 10.1109/ECOC52684.2021.9606152.

[10] ETSI ISG F5G, “Telemetry Framework and Requirements
for Access Network,” Draft 006, Feb 2022 [Work in
Progress].

[11] A. Sgambelluri, A. Pacini, F. Paolucci, P. Castoldi, and L.
Valcarenghi, “Reliable and scalable Kafka-based
framework for optical network telemetry,” Journal of
Optical Communications and Networking, vol. 13, no. 10,
pp. E42-E52, 2021. DOI: 10.1364/JOCN.424639.

[12] R. Vilalta, R. Casellas, R. Martinez, R. Munoz, A.
Gonzalez-Muniz, and J. P. Fernandez-Palacios, “Optical
Network Telemetry with Streaming Mechanisms using
Transport API and Kafka,” Proceedings of European
Conference on Optical Communication, 2021. DOI:
10.1109/ECOC52684.2021.9606002.

[13] Google Protocol Buffers (GPB, Protobuf):
https://developers.google.com/protocol-buffers.

[14] F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi,
“Network telemetry streaming services in SDN-based
disaggregated optical networks”, Journal of Lightwave
Technology, vol. 36, no. 15, pp. 3142–3149, 2018. DOI:
10.1109/JLT.2018.2795345.

[15] OpenConfig Telemetry:
https://github.com/openconfig/public/tree/master/release/
models/telemetry/.

[16] Apache Kafka: https://kafka.apache.org/.

[17] Telegraf: https://www.influxdata.com/time-series-
platform/telegraf/.

[18] InfluxDB: https://www.influxdata.com/products/influxdb-
overview/.

Tu2.5 European Conference on Optical Communication (ECOC) 2022 ©
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

https://doi.org/10.1109/ECOC52684.2021.9605997
https://doi.org/10.1364/JOCN.10.000A27
https://doi.org/10.1364/JOCN.424654
https://doi.org/10.1109/ECOC.2017.8346066
https://doi.org/10.1109/ICCE-Asia49877.2020.9276768
https://doi.org/10.1364/JOCN.425167
https://doi.org/10.1364/JOCN.438255
https://doi.org/10.1364/JOCN.10.00D126
https://doi.org/10.1109/ECOC52684.2021.9606152
https://doi.org/10.1364/JOCN.424639
https://doi.org/10.1109/ECOC52684.2021.9606002
https://developers.google.com/protocol-buffers
https://doi.org/10.1109/JLT.2018.2795345
https://github.com/openconfig/public/tree/master/release/models/telemetry
https://github.com/openconfig/public/tree/master/release/models/telemetry
https://kafka.apache.org/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/

