An Extended Version of the ISRS GN model in Closed-Form Accounting for Short Span Lengths and Low Losses

H. Buglia⁽¹⁾, E. Sillekens⁽¹⁾, A. Vasylchenkova⁽¹⁾, R.I. Killey⁽¹⁾, P. Bayvel⁽¹⁾, and L. Galdino⁽¹⁾

(1) Optical Networks Group, Department of Electronic and Electrical Engineering, UCL (University College London), Torrington Place, London WC1E 7JE, United Kingdom, henrique.buglia.20@ucl.ac.uk.

Abstract A closed-form formula for the nonlinear interference (NLI) estimation of arbitrary modulation formats, supporting short span lengths and low losses in ultra-wideband optical transmission systems is presented. The formula is tested over 20 THz and accurately estimates the NLI at every point of the fibre span.

Introduction

To address the current capacity limitations in the installed networking infrastructure, new technologies are being explored in optical communications. These include extending the optical transmission bandwidth beyond the conventionally-used C+L band^{[1]-[3]}, resulting in ultra-wideband (UWB) transmission. Associated with this, research in intelligent network planing tools is being carried out^[4] and an effective approach is to bring physical layer awareness to the control plane level^[5]. Therefore, an efficient, fast and accurate model to estimate nonlinear interference (NLI) at *every step* of the fibre span is essential.

For UWB systems, the inter-channel stimulated Raman scattering (ISRS) effect must be considered in the estimation of the NLI. To enable real-time prediction of the UWB system performance, formulations in closed-form are needed. These formulations must offer a fast, yet accurate, evaluation of the network characteristics, and can be widely used for network optimisation purposes^{[1],[2]}. Numerous closed-form equations for the Gaussian Noise (GN) model^[6] have been proposed to account for the ISRS effect^[7] in[8]-[11]. A limitation of all these works is that the proposed formulas do not account for short span lengths and extremely low-losses, due to the approximations made to derive them. The closedform formulas proposed in[12],[13] do account for short span lengths and extremely low-losses but do not include the ISRS effect, and hence are not suitable for UWB modeling.

In this paper, we propose a new closed-form formula, which is obtained by removing one of the main approximations used in deriving the formulas in^{[9],[10]}. Enabled by this, we derive, for the first time, a closed-form expression capable of accurately estimating the NLI in the presence of ISRS

for any fibre span length and for fibres with extremely low-losses ($\sim 0.02\,\mathrm{dB/km}$). The proposed closed-form expression accounts for all modulation formats, wavelength-dependent attenuation and dispersion, and its accuracy is compared with the ISRS GN model in integral form^{[7],[10]}.

The closed-form formula

For any optical fibre link, the signal-to-noise ratio for the channel i (SNR $_i$) at the end of the span after amplification can be estimated as

$$\mathsf{SNR}_i^{-1} pprox \mathsf{SNR}_{\mathsf{NLI},i}^{-1} + \mathsf{SNR}_{\mathsf{ASE},i}^{-1} + \mathsf{SNR}_{\mathsf{TRX},i}^{-1}, \ \ (1)$$

where $SNR_{NLI,i}$, $SNR_{ASE,i}$ and $SNR_{TRX,i}$ originate from fibre nonlinearity, amplifier noise and transceiver noise, respectively. This work is devoted to the calculation of $SNR_{NLI,i}$.

Let $\tilde{T}_i = -\frac{P_{\text{tol}}C_r}{\tilde{\alpha}}f_k$, $T=1+\tilde{T}_k$, $\phi=-4\pi^2\left(f_1-f_i\right)\left(f_2-f_i\right)\left[\beta_2+\pi\beta_3(f_1+f_2)\right]$ and $\alpha_{\text{I}}=\alpha+l\tilde{\alpha}$. By assuming the normalised power evolution along the fibre $\rho(z,f_i)$ as a semi-analytical solution of the Raman differential equations [14],[15], the so-called link function [6] of the ISRS GN model in closed-form is approximated as [9],[10]

$$\mu(f_1, f_2, f_i) \approx \left| -T \sum_{0 \le l \le 1} \left(\frac{-\tilde{T}_i}{T} \right)^l \left(\frac{1 - e^{-(\alpha_t - j\phi)L}}{-\alpha_l + j\phi} \right) \right|^2, \quad (2)$$

where β_2 and β_3 are, respectively, the group velocity dispersion (GVD) parameter and its linear slope, L is the span length, P_{tot} is the total launch power, f_i is the frequency of the channel of interest (COI), α is the fibre loss, C_r is the slope of the Raman gain spectrum and $\tilde{\alpha}$ models the gain/loss due to the ISRS effect along the fibre. Note that, the last three parameters (α , $\tilde{\alpha}$ and C_r)

$$\begin{aligned} & \mathsf{SNR}_{\mathsf{NLl},i}^{-1} \approx T \sum_{\substack{0 \leq l \leq 1 \\ 0 \leq l' \leq 1}} \left(\frac{-\tilde{T}_{i}}{T} \right)^{l+l'} \kappa_{l} \kappa_{l'} \left(\left\{ \frac{16}{27} \frac{\pi \gamma^{2} P_{i}^{2} n^{1+\epsilon}}{B_{i}^{2} 2 C_{l} \phi_{i}} \right. \\ & \times \left[\frac{B_{l} + 2C_{l}}{\sqrt{D_{l} + B_{l} C_{l}}} \operatorname{asinh} \left(\sqrt{\frac{D_{l} + B_{l} C_{l}}{2B_{l}^{2} C_{l}^{2} + A_{l}^{2} + 2B_{l} C_{l} D_{l}} \frac{3\phi_{i} B_{i}^{2}}{8\pi} \right) - \frac{B_{l} - 2C_{l}}{\sqrt{D_{l} - B_{l} C_{l}}} \operatorname{asinh} \left(\sqrt{\frac{D_{l} - B_{l} C_{l}}{2B_{l}^{2} C_{l}^{2} + A_{l}^{2} - 2B_{l} C_{l} D_{l}} \frac{3\phi_{i} B_{i}^{2}}{8\pi}} \right) \right] \right\} \\ & + \frac{32}{27} \sum_{k=1, k \neq i}^{N_{\mathrm{ch}}} \frac{\gamma^{2} P_{k}^{2}}{B_{k}} \left\{ \frac{n + \frac{5}{6} \Phi}{2C_{l} \phi_{i,k}} \left[\frac{(B_{l} + 2C_{l}) \operatorname{atan} \left(\frac{\phi_{i,k} B_{i}}{2\sqrt{D_{l} + B_{l} C_{l}}} \right)}{\sqrt{D_{l} + B_{l} C_{l}}} - \frac{(B_{l} - 2C_{l}) \operatorname{atan} \left(\frac{\phi_{i,k} B_{i}}{2\sqrt{D_{l} - B_{l} C_{l}}} \right)}{\sqrt{D_{l} - B_{l} C_{l}}} \right] \\ & + \frac{5}{6} \frac{\Phi 2\pi \tilde{n}}{|\phi| B_{k}^{2} A_{l}} \left[(2 |f_{k} - f_{i}| - B_{k}) \ln \left(\frac{2 |f_{k} - f_{i}| - B_{k}}{2 |f_{k} - f_{i}| + B_{k}} \right) + 2B_{k} \right] \right\} \right). \end{aligned} \tag{4}$$

are channel dependent and matched using non-linear least-squares fitting to reproduce the true power profile, which is obtained by numerically solving the differential Raman equations^[15].

If the approximation $e^{-\alpha_l L} \ll 1$ is assumed in Eq. (2), such that $1-e^{-(\alpha_t-j\phi)L}\approx 1$, the closed-form formulas published in [10],[16],[17] are obtained. This assumption is generally satisfied for relatively long span lengths and high losses. In order to remove the above-mentioned limitation and obtain a set of new closed-form formulas which accurately account for any spans lengths and any values of fibre loss in the presence of ISRS, we follow the approach in [12], and approximate the fraction presented in Eq. 2 as

$$\frac{1 - e^{-(\alpha_t - j\phi)L}}{-\alpha_l + j\phi} \approx \frac{\kappa_l}{-\tilde{a}_l + j\phi},\tag{3}$$

where κ_l and \tilde{a}_l are chosen such that the first-order Taylor approximation of both the left and the right side of Eq. (3) around the variable $\phi=0$ become equals. This yields

$$\tilde{a}_l = \frac{\alpha_l (1 - e^{-\alpha_l L})}{1 - e^{-\alpha_l L} - \alpha_l L e^{-\alpha_l L}}$$

and

$$\kappa_l = \frac{\tilde{a}_l (1 - e^{-\alpha_l L})}{\alpha_l}.$$

The proposed approximation presented in Eq. (3) captures the effect of the attenuation in the oscillatory term $e^{-(\alpha_t - j\phi)L}$. This would also be important when modeling links employing backward Raman amplification, as a similar term arising in such cases must also be taken into account^[18].

Inserting the approximation from Eq. (3) into Eq. (2), the SNR_{NLI,i} can be calculated as Eq. (4). In this equation, $\phi = -4\pi^2 \left[\beta_2 + \pi\beta_3(f_i + f_k)\right]L$, $\phi_i = -4\pi^2 \left(\beta_2 + 2\pi\beta_3 f_i\right)$, $\phi_{i,k} = -4\pi^2 \left(f_k - f_i\right) \left[\beta_2 + \pi\beta_3 \left(f_i + f_k\right)\right]$, Φ is the excess kurtosis of the modulation format, n is the

number of spans, $\tilde{n}=\{0 \text{ for } n=1 \text{ , } n \text{ for } n>1\},$ P_i is the channel launch power with bandwidth B_i , γ is the nonlinear coefficient, N_{ch} is the number of channels, ϵ is the coherent factor^[6], $A_l=\tilde{a}_l\tilde{a}_l$ ', $B_l=\tilde{a}_l-\tilde{a}_l$ ', $C_l=\frac{1}{2}\sqrt{4A_l+B_l^2}$ and $D_l=\frac{1}{2}(2A_l+B_l^2)$. Note that, in the limit of $\alpha_t L \to \infty$, Eq. (4) converges to the closed-form formula reported in^[17].

Transmission system setup

The transmission system under consideration is similar to that in[17] and consists of a WDM transmission with $N_{\rm ch}$ =451 Nyquist spaced channels centered on 1540 nm. Each channel was modulated at the symbol rate of 40 GBd. This resulted in a total bandwidth of 20 THz (158 nm), ranging from 1470 nm to 1615 nm, corresponding to the transmission over the S- (1470 nm - 1530nm), C- (1530 nm - 1565nm) and L- (1565 nm -1625nm) bands. Spectral gaps of 10 nm and 5 nm were considered between the S-/C- and C-/L- bands, respectively. The channels were transmitted over 5 x 20 km spans using a singlemode fibre (SMF). A spectrally uniform launch power profile was used, where each channel carries -2 dBm. The Raman gain spectrum and the wavelength-dependent attenuation were measured from a Corning[®] SMF-28[®] ULL fibre and are shown in[17]. Dispersion and nonlinearity parameters were $D=18~\frac{\rm ps}{{\rm nm.km}},~S=0.067~\frac{\rm ps}{{\rm nm}^2.{\rm km}}$ and $\gamma = 1.2 \frac{1}{\text{W.km}}$.

Results

The SNR_{NLI} for each WDM channel is shown in Fig. 1 for the transmission setup described in the previous section. The transmission system performance estimation using the proposed closed-form formula, i.e, Eq. (4), are shown for two cases: Gaussian and 64-QAM constellations. The accuracy of Eq. (4) is compared with the ISRS GN model in integral form, for both Gaussian constellation^[7] and arbitrary modulation formats^[10]. The closed-form formula proposed in^[17]

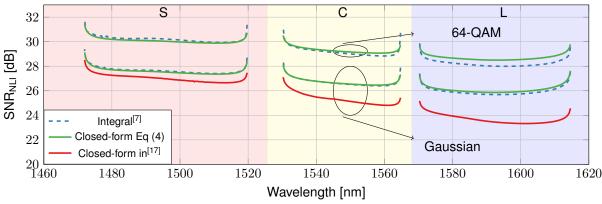


Fig. 1: Nonlinear performance after 5 x 20 km transmission.

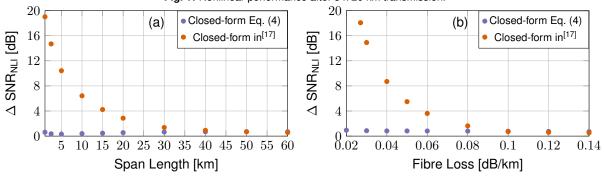


Fig. 2: Maximum per-channel SNR_{NLI} difference (Δ SNR_{NLI}) between the integral ISRS GN model and the proposed closed-form formula in Eq. (4) (purple points) for different (a) span lengths and (b) fibre losses. The Δ SNR_{NLI} using the formula in^[17] are also shown for comparison (orange points).

is shown for Gaussian constellations for comparison (the 64-QAM curve obtained using this expression was even less accurate).

The interaction between fibre attenuation, dispersion and normalised ISRS-power evolution profile, leads to the $\mathrm{SNR}_{\text{NLI}}$ profile as shown in Fig. 1. The high dispersion towards the Lband reduces the NLI for the long-wavelength This reduction however is counterchannels. balanced by the ISRS-transferred power, increasing the NLI for these channels, reducing the $\mathrm{SNR}_{\text{NLI}}.$ For the Gaussian and 64-QAM constellations respectively, maximum errors of 0.55 dB and 1 dB between the proposed closed-form formula and the integral ISRS GN model were found showing good accuracy in estimating the NLI. For the closed-form formula in[17] a maximum error of 3 dB was found for Gaussian constellations; this error is larger towards long-wavelength channels because the wavelength-depend attenuation for these channels is lower, due to the ISRS-transferred power, breaking the assumption $e^{-\alpha_l L} \ll 1$.

To validate the accuracy of the proposed closed-form formula, the previous simulation scenario has been varied in two different ways: (a) the span length was swept from 1km to 60 km and (b) the span length was fixed at 80 km and a spectrally uniform loss profile ranging from 0.02 dB/km

to 0.14 dB/km was considered. Fig. 2 shows the maximum per-channel SNR_{NLI} difference, i.e, the maximum per-channel error in terms of SNR_{NLI} between the integral ISRS-GN model and the proposed closed-form formula. The same analysis using the closed-form expression reported in^[17] is also shown for comparison. The results were obtained considering Gaussian constellations. As shown in Fig. 2, the new closed-form formula proposed in this paper can accurately account for any span lengths and low losses; among all the scenarios considered in Fig. 2, maximum errors of 0.7 dB and 0.94 dB were found respectively when considering different span lengths and losses.

Conclusions

A closed-form formula that can accurately evaluate the NLI in the presence of ISRS at any step of the fibre span and in extremely low loss regimes ($\sim 0.02~\text{dB/km}$) is proposed. The formula was applied in modeling an S+C+L band (20 THz) transmission system and validations were carried out using integral model simulations; the proposed closed-form formula estimates the NLI in a few microseconds, and is thus suitable for effective and intelligent UWB network planning tools and rapid performance evaluations.

Funding. Engineering and Physical Sciences Research Council (EP/R035342/1, EP/T517793/1); Microsoft; Leverhulme Trust (ECF2020-150); Royal Society; Royal Academy of Engineering.

References

- [1] H. Buglia, E. Sillekens, A. Vasylchenkova, et al., "Challenges in extending optical fibre transmission bandwidth beyond c+l band and how to get there", in 2021 International Conference on Optical Network Design and Modeling (ONDM), 2021, pp. 1–4. DOI: 10.23919/0NDM51796.2021.9492434.
- [2] H. Buglia, E. Sillekens, A. Vasylchenkova, P. Bayvel, and L. Galdino, "On the impact of launch power optimization and transceiver noise on the performance of ultra-wideband transmission systems", *J. Opt. Commun. Netw.*, vol. 14, no. 5, B11–B21, May 2022. DOI: 10.1364/JOCN.450726.
- [3] A. Vasylchenkova, E. Sillekens, R. I. Killey, and P. Bayvel, "Mutual shaping and pre-emphasis gain magnification in the throughput maximisation for ultrawideband transmission", in *Optical Fiber Communication Conference (OFC) 2022*, Optica Publishing Group, 2022, Th1H.4. DOI: 10.1364/0FC.2022.Th1H.4.
- [4] R. Matzner, D. Semrau, R. Luo, G. Zervas, and P. Bayvel, "Making intelligent topology design choices: Understanding structural and physical property performance implications in optical networks", J. Opt. Commun. Netw., vol. 13, no. 8, pp. D53–D67, Aug. 2021.
- [5] D. Ives, S. Yan, L. Galdino, et al., "Distributed abstraction and verification of an installed optical fibre network", Scientific Reports, vol. 11, p. 10750, May 2021. DOI: 10.1038/s41598-021-89976-w.
- [6] P. Poggiolini, "The GN model of non-linear propagation in uncompensated coherent optical systems", *Journal* of Lightwave Technology, vol. 30, no. 24, pp. 3857– 3879, 2012. DOI: 10.1109/JLT.2012.2217729.
- [7] D. Semrau, R. I. Killey, and P. Bayvel, "The Gaussian noise model in the presence of inter-channel stimulated Raman scattering", *Journal of Lightwave Technology*, vol. 36, no. 14, pp. 3046–3055, 2018. DOI: 10.1109/ JLT.2018.2830973.
- [8] P. Poggiolini, M. R. Zefreh, G. Bosco, F. Forghieri, and S. Piciaccia, "Accurate non-linearity fully-closed-form formula based on the GN/EGN model and large-dataset fitting", in 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019, pp. 1–3.
- [9] D. Semrau, R. I. Killey, and P. Bayvel, "A closed-form approximation of the Gaussian noise model in the presence of inter-channel stimulated raman scattering", *Journal of Lightwave Technology*, vol. 37, no. 9, pp. 1924–1936, 2019. DOI: 10.1109 / JLT.2019. 2895237.
- [10] D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, "A modulation format correction formula for the Gaussian noise model in the presence of inter-channel stimulated Raman scattering", *Journal of Lightwave Technology*, vol. 37, no. 19, pp. 5122–5131, 2019. DOI: 10.1109/ JLT.2019.2929461.
- [11] M. R. Zefreh, F. Forghieri, S. Piciaccia, and P. Poggiolini, "A closed-form nonlinearity model for forward-Raman-amplified WDM optical links", in *Optical Fiber Communication Conference (OFC) 2021*, Optica Publishing Group, 2021, p. M5C.1. DOI: 10.1364/0FC. 2021.M5C.1.
- [12] M. R. Zefreh and P. Poggiolini, "A GN-model closedform formula supporting ultra-low fiber loss and short fiber spans", arXiv:2111.04584 [eess.SP], 2021.

- [13] W. Klaus and P. J. Winzer, "Hollow-core fiber capacities with receiver noise limitations", in 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022, pp. 1–3.
- [14] D. Christodoulides and R. Jander, "Evolution of stimulated raman crosstalk in wavelength division multiplexed systems", *IEEE Photonics Technology Letters*, vol. 8, no. 12, pp. 1722–1724, 1996. DOI: 10.1109/68. 544731.
- [15] M. Zirngibl, "Analytical model of Raman gain effects in massive wavelength division multiplexed transmission systems", *Electronics Letters*, vol. 34, no. 8, pp. 789– 790, 1998.
- [16] D. Semrau, R. I. Killey, and P. Bayvel, "A closed-form approximation of the Gaussian noise model in the presence of inter-channel stimulated Raman scattering", *Journal of Lightwave Technology*, vol. 37, no. 9, pp. 1924–1936, 2019. DOI: 10 . 1109 / JLT . 2019 . 2895237.
- [17] D. Semrau, L. Galdino, E. Sillekens, D. Lavery, R. I. Killey, and P. Bayvel, "Modulation format dependent, closed-form formula for estimating nonlinear interference in S+C+L band systems", in 45th European Conference on Optical Communication (ECOC 2019), 2019, pp. 1–4. DOI: 10.1049/cp.2019.0892.
- [18] D. Semrau, G. Saavedra, D. Lavery, R. I. Killey, and P. Bayvel, "A closed-form expression to evaluate nonlinear interference in Raman-amplified links", *Journal of Lightwave Technology*, vol. 35, no. 19, pp. 4316–4328, 2017. DOI: 10.1109/JLT.2017.2741439.