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Abstract Optomechanical resonators provide a route to interconversion of microwave and optical
photons for quantum interconnects. We present a platform comprising a GaP photonic crystal cavity
integrated on prefabricated niobium circuits, with mechanical modes at ~3.2 GHz and optomechanical
coupling rates up to go/2m = 300 kHz. ©2022 The Author(s)

Electromechanically actuated optomechanical
resonators offer an attractive route to coherent
interconversion of microwave and optical
photons [1-5]. Such devices could enable optical
interconnection of quantum computers based on
qubits operating at microwave frequencies,
providing both scalability and added functionality.
Here, we present a platform for microwave-to-
optical conversion utilizing an optical cavity made
of gallium phosphide (GaP) integrated on

prefabricated microwave circuits and present
demonstrating

early results coherent

transduction at room temperature [6].

GaP possesses an attractive combination of a
large refractive index (n > 3) and a wide
electronic bandgap (2.26 eV) [7]. These values
offer the possibility of creating devices with strong
light confinement, enhanced light-matter
interaction, and low two-photon absorption at
telecommunication wavelengths. In addition,
GaP has a non-centrosymmetric crystal structure
and is thus piezoelectrically active.

Despite this uncommon confluence of
properties, the use of GaP in integrated photonics
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Fig. 1: (a) False-color scanning electron microscope image of a GaP photonic crystal cavity suspended above integrated
niobium electrodes. (b) Finite-element-method (FEM) simulation of the localized optical mode. The color scale indicates the
magnitude of the electric field |E|. (c) FEM simulation of three extended mechanical breathing modes. The color scale indicates

the magnitude of the mechanical displacement |ul.
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has remained largely unexplored. The main
challenge has been the lack of methods for
obtaining GaP on low-refractive-index substrates
and patterning it into structures with nanometer
precision while maintaining good material quality.
To address these issues, we have developed a
direct wafer-bonding approach to integrate high
quality, epitaxially-grown GaP onto silicon
dioxide on a silicon carrier wafer as well as

optimized reactive-ion-etching techniques for
pattern transfer defined by electron-beam
lithography [8,9].

Making use of these processing capabilities,
we fabricate transducers comprising a quasi-one-
dimensional photonic crystal cavity made of
single-crystal GaP [10] integrated on niobium
circuits on an intrinsic silicon substrate (Fig. 1).
We exploit spatially extended, sideband-resolved
mechanical breathing modes at ~3.2 GHz. The
mechanical modes are actuated by the niobium
electrodes via the inverse piezoelectric effect at a
location remote from the optical mode to reduce
losses. The extended modes nevertheless
maintain substantial optomechanical coupling, up
to 300 kHz. With such a device, we demonstrate
and fully characterize coherent transduction of
microwave signals to optical frequencies at room
temperature.

The maximum total transduction efficiency for
the device as measuredisn = 1.4 x 10", This
low value is a consequence of coupling to a
highly impedance-mismatched transmission line
instead of a resonant microwave cavity. We
therefore consider instead the more meaningful
situation of coupling to a superconducting qubit
and estimate through simulations the expected
electromechanical coupling rate. We predict that
the system could achieve a coupling rate to a
transmon qubit of ~200 kHz and would be deep
enough in the strong coupling regime to permit a
faithful swap of the qubit and mechanical
resonator states if the qubit lifetime T, = 10 ys.

This work represents a first step towards
integration of GaP electro-opto-mechanical
transducers with superconducting quantum
processors.
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