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Abstract. We propose a low-complexity unreplicated crosstalk canceller (UCC) that eliminates inter-
channel interference in a weakly-coupled SDM link. Transmission experiment over installed step-index 
multicore fibre cables verifies that the UCC tripled the achievable transmission reach for PDM-16QAM 
signals even with inter-core crosstalk accumulation of -5 dB. ©2022 The Author(s) 

Introduction 
Technical breakthrough based on space division 
multiplexing (SDM) to overcome the capacity limit 
of standard single mode fibre (SMF) is urgently 
required toward a future sustainably-developing 
optical transport network. The spatial 
multiplexing approaches using optical fibres’ 
cores are categorized into uncoupled and 
coupled ones, and the former with standard 
diameter cladding is expected to emerge as an 
early realization of a SDM system due to its 
advantages of compatibility with existing 
technologies of SMFs, optical devices/interfaces, 
and digital signal processing (DSP). Although a 
fibre design of multicore fibre (MCF) with a simple 
step index (SI) profile is appealing in terms of the 
mass productivity and optical backward 
compatibility [1], the transmission capacity and/or 
reach is fundamentally limited by inter-core 
crosstalk (IXT) under the constraint of fixed 
cladding diameter [2-4]. One solution to mitigate 
the IXT impact is the use of multiple-input 
multiple-output (MIMO) DSP [5]. 
    In this work, to alleviate the IXT-induced 
limitation of achievable transmission reach over 
MCF links, we propose a novel unreplicated 
crosstalk canceller (UCC) that removes IXT by 
MIMO-DSP without any knowledge of interfering 
signal waveforms nor laser-originated phase 
noises, but only requiring (decoded) interfering 
data streams. The proposed UCC is numerically 
shown to provide IXT cancellation without laser-
phase-synchronization. We also show through 
MCF transmission experiments that the UCC 
enables transmission reach for 16QAM signals to 
be extended to 300 km even over high-crosstalk 
four-core SI-MCF cable transmission links. To the 
best of authors’ knowledge, this is the first SDM 
transmission demonstration performing digital 
IXT cancellation using installed SI-MCF cables. 

Proposed: unreplicated crosstalk canceller 
We consider an SDM system where 𝑁𝑁𝑡𝑡  spatial 
channels propagate over a SDM link that 
mutually interfere with weak couplings, and 
received by 𝑁𝑁𝑟𝑟  receivers. Assuming the linear 
coherent transmission, the i-th received signal 𝑦𝑦𝑖𝑖 
at each sample time is expressed as  

𝑦𝑦𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑒𝑒𝑗𝑗(𝜑𝜑𝑖𝑖
𝑡𝑡+𝜑𝜑𝑖𝑖

𝑟𝑟) + ∑ ℎ𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑒𝑒𝑗𝑗(𝜑𝜑𝑗𝑗
𝑡𝑡+𝜑𝜑𝑖𝑖

𝑟𝑟)𝑁𝑁𝑡𝑡
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 + 𝑛𝑛𝑖𝑖 , (1) 

where 𝑥𝑥𝑝𝑝, ℎ𝑝𝑝𝑝𝑝, 𝜑𝜑𝑝𝑝𝑡𝑡 , 𝜑𝜑𝑝𝑝𝑟𝑟 and 𝑛𝑛𝑝𝑝 denote an p-th data 
stream, an (p,q)-th entry of a transfer matrix, a 
phase noise from p-th Tx laser, a phase noise 
from p-th Rx laser, and a noise for p-th spatial 
channel, respectively. The second term in eq. (1) 
represents IXT at i-th spatial channel from others. 
As for linear MIMO detection, two approaches are 
applicable to extract the i-th data stream estimate 
𝑥𝑥�𝑖𝑖 . If 𝑁𝑁𝑟𝑟  received signals, namely 𝒚𝒚 =
�𝑦𝑦1,⋯ , 𝑦𝑦𝑁𝑁𝑟𝑟�

𝑇𝑇, are available, IXT is suppressed by 
finding a weight vector 𝒘𝒘𝑖𝑖through the well-known 
MIMO equalization:  𝑥𝑥�𝑖𝑖 = 𝒘𝒘𝑖𝑖

𝑇𝑇𝒚𝒚, as demonstrated 
in [5]. This first approach is referred to as nulling 
of interferences (Figure 1(a)) in the context of 
wireless literatures [6,7]. The proposed UCC 
scheme in this work focuses on the second 
approach, known as cancellation, directly 
removing crosstalk components by 
reconstructing interfering signals in the digital 

 
Fig. 1: Comparison of MIMO detection approaches:  
(a) crosstalk nulling (conventional MIMO equalizer), and  
(b) unreplicated crosstalk cancellation (proposed). 
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domain (Fig.1(b)). This is accomplished by 
feeding decoded data stream 𝑥𝑥�𝑗𝑗 (𝑗𝑗 ≠ 𝑖𝑖)  (or, 
original data stream 𝑥𝑥𝑗𝑗  if available) into the 
canceller. The remaining factor ℎ𝑖𝑖𝑖𝑖 is obtained via, 
say, adaptive filtering technique including least 
mean squared adopted unreplicated interference 
canceller originally designed for mode-
multiplexed transmission links [8], and 𝑒𝑒𝑗𝑗(𝜑𝜑𝑗𝑗

𝑡𝑡+𝜑𝜑𝑖𝑖
𝑟𝑟) 

is tracked by digital carrier phase recovery (CPR) 
schemes including single-input single-output 
(SISO) CPR or our previously-proposed MIMO-
CPR [9]. Accordingly, the application of UCC 
requires a succeeding input of 𝑥𝑥�𝑗𝑗 with low symbol 
error rate prior to its processing. In particular, this 
may be possible in uncoupled or weakly-coupling 
regimes because of low crosstalk impacts. The 
use of proposed UCC may bring a simplified 
coherent SDM transceiver architecture in SDM-
MIMO transmission, because it requires no 
knowledge of complex interfering signal 
waveforms nor requirement on Tx/Rx-laser 
synchronization between spatial channels. 
    We evaluate the performance of UCC by a 
numerical simulation where 2 × 1 10-GBaud 
signals generated/received by light sources with 
a linewidth of 100 kHz are mutually mixed by a 
crosstalk matrix, and then processed with UCC. 
We assume that the detection of the 16QAM-
modulated data stream 𝑥𝑥1  is performed by the 
prior knowledge of AWGN-modulated 𝑥𝑥2  which 
impacts as an origin of IXT of -15 dB. UCC 
performs crosstalk cancellation with MMSE-

based deterministic weight vector either with 
SISO-CPR (type-I) or MIMO-CPR (type-II). Also 
assumed is two cases where Tx lasers are 
case1) phase-synchronized  (i.e., 𝜑𝜑1𝑡𝑡 = 𝜑𝜑2𝑡𝑡 ) and 
case2) unsynchronized. Figure 2 represents the 
BER results of 𝑥𝑥1. BER improvement w.r.t. OSNR 
was saturated due to crosstalk from 𝑥𝑥2. 
Remarkably, in the case 1, both types of UCC 
correctly output 𝑥𝑥�1 only using 𝑦𝑦1 and 𝑥𝑥2 as input 
signals (Fig.2(a)).  In the case2, however, type-I 
UCC fails to detect 𝑥𝑥1 because of the presence of 
multiple phase noises (i.e., 𝜑𝜑1𝑡𝑡  and 𝜑𝜑2𝑡𝑡 ), which 
cannot be dealt by SISO-CPR (Fig.2(b)). On the 
contrary, type-II UCC still provides high detection 
performance even for the case2. These results 
inform us that crosstalk cancellation for signals 
generated from phase-unsynchronized 
transmitters are enabled only by type-II UCC. 

Experimental setup 
The setup for MCF transmission link is shown in 
Fig. 3. Ten WDM channels were loaded with 
12.5-GHz channel spacing by spectrally shaping 
ASE source through a wavelength-selective 
switch [10], located from 1549.627 nm to 
1550.529 nm. The test channels were generated 
via two independent transmitter sets comprising 
25-kHz-linewidth free-running external cavity 
lasers, arbitrary waveform generators (AWGs), 
IQ-modulators, and PDM emulators with a 295-
ns delay for decorrelation. One generated 12-
GBaud PDM-16QAM signals for inputs of core#1 
and #3 with a 567-ns delay, and other was used 
for 12-GBaud PDM-QPSK signal generation into 
core#2 and #4 with a 1733-ns delay. Note that 
two AWGs are 10-MHz clock-synchronized. For 
both modulations, the transmission frame was 
the LDPC-coded 33360 symbol-length frame with 
overheads (OHs) of 25% for FEC decoding 
defined in DVB-S2 standard and 1.4% for the 
training sequence. To perform long-distance 
signal transmission, a four-fold recirculating loop 
system was constructed. The transmission fibre 
cable had 125-µm-cladding-diameter step-index 
homogeneous four-core MCFs with a span length 
of 30 km, core pitch of 40 µm, and measured IXT 
including fan-in/fan-out devices of less than -15.7 
dB/span at 1550 nm [11]. The optical power 

 
Fig. 3: Experimental setup for SDM-MIMO transmission over installed step-index four-core MCF cable. 
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Fig. 2: Numerical BER performance of UCC for (a) phase-
synchronized (case1), and (b) phase-unsyncronized 
systems (case2). 
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launched into the MCF was set to -5 dBm/λ/core. 
After the transmission, signals were detected 

and stored by coherent receivers for offline 
processing, performing front-end error correction, 
chromatic dispersion compensation and MIMO 
CPR-embedded UCC. The strategy for 
demonstrating UCC performance is to firstly 
recover crosstalk-robust QPSK signals 
propagating over core#2 and #4 without MIMO-
structured DSP (except for processing between 
polarisation), then LDPC-decoding them to 
rebuild and inject these data streams of 𝑥𝑥2 and 𝑥𝑥4 
into UCC processing for the recovery of 16QAM 
signals propagating over core#1 and #3. Hence 
UCC recovered signals at core#1 by the inputs of 
{𝑦𝑦1, 𝑥𝑥�2, 𝑥𝑥�4}, and those at core#3 by �𝑦𝑦3, 𝑥𝑥�2, 𝑥𝑥�4 �.  

Experimental results 
We start the analysis with IXT behaviour. For its 
purpose, (linear-scaled) IXT from j-th core to i-th 
core was obtained as 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 = �ℎ𝑖𝑖𝑖𝑖�

2/|ℎ𝑖𝑖𝑖𝑖|2using the 
channel transfer matrix that was estimated from 
the weight matrix of conventional MIMO equalizer. 
Figures 4(a) and (b) show the crosstalk matrices 
at 30.5 km and 457.5 km, respectively, indicating 
that IXT at each core mainly attributes to 
interference from its adjacent cores. IXT 
accumulation in longer transmission reach were 
depicted in Fig.4(c) (at core#1) and Fig.4(d) (at 
core#3). Total IXT from all cores at the first span 
was around -15 dB, which was well agree with 
optically measured data. From the figures, we 
also noticed that total IXT exceeded -10 dB after 
100-km transmission, which is not allowable 
especially for high-order QAM signal 
transmission. We then performed long-haul 
transmission, whose BER results for 16QAM 
signals at the centre channel (1550.057 nm) are 
summarized in Figure 5. Although not shown in 
the figure, even without any crosstalk 
cancellation, QPSK signals propagating over 

core#2 and #4 were perfectly reconstructed with 
no symbol error after LDPC decoding over a 
distance up to 305 km. 16QAM signals at core#1 
and #3 were heavily affected by IXT, resulting in 
achievable reach of 91.5 km. The decoded QPSK 
symbol patterns {𝑥𝑥�2, 𝑥𝑥�4}  together with each 
received signals for core#1 and core#3 were then 
used for UCC processing. The use of the UCC 
remarkably extended the achievable 
transmission reach to 305 km, corresponding to 
the distance with IXT of -5 dB (see Figs.4(c)-(d)). 
For a reference purpose, the detection 
performance of crosstalk nulling (i.e., 
conventional MIMO equalizer) that requires not 
only the inputs of received signal waveforms at 
the core under test and at neighbouring cores, 
but also Rx-laser phase synchronization is also 
plotted in Fig.5, showing a deviation between the 
BER curve for UCC. This might be a penalty of 
imperfect reconstruction of interference terms 
that were provided by UCC. 

Conclusions 
We proposed unreplicated crosstalk canceller 
(UCC) to address the performance-limiting inter-
core crosstalk (IXT) in multicore fibre links. 
Conducted transmission experiments using 
installed step-index multicore fibre cables 
showed that UCC scheme compensated for IXT 
only using decoded signals propagating adjacent 
cores, hence allowing PDM-16QAM signals to 
successfully transmit over 300 km even with high 
IXT presence of -5 dB. 
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Fig. 4: Inter-core crosstalk analyses. Crosstalk matrices 
at (a) 30.5 km and (b) 457.5 km. Crosstalk accumulation 
at (c) core#1 and (d) core#3.  
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Fig. 5: BERs in long-haul 16QAM MCF transmission 
obtained by MIMO-DSP without UCC (triangle), with 
UCC (diamond) for (a) core#1 and (b) core#3. BERs by 
conventional MIMO equalization are also plotted for a 
reference (broken line). 
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