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Abstract A spiking neural network (SNN) nonlinear equalizer model is implemented on the mixed-
signal neuromorphic hardware system BrainScaleS-2 and evaluated for an IM/DD link. The BER 2e-3 is
achieved with a hardware penalty less than 1 dB, outperforming numeric linear equalization. ©2022 The

Author(s)

Introduction

Cloud services cause an exponentially growing
traffic in data centers. This requires optical
transceivers to operate at lower power and lower
cost. Because digital signal processing (DSP)
has high power consumption, recent research en-
visions replacing the DSP in part with an analog
frontend with lower power consumption. One ap-
proach is photonic neuromorphic computing [1],
which has been proposed, e.g., for chromatic dis-
persion (CD) compensation and nonlinear equal-
ization in short-reach optical transmission [2, 3].
A second approach is analog electronic neu-
romorphic computing, which implements spik-
ing neural networks (SNNs) [4] in analog hard-
ware [5], adopting the brain’s unique power effi-
ciency by imitating the basic functioning of the hu-
man brain. Recently, in-the-loop (ITL) training of
SNNSs on analog hardware [6] has shown promis-
ing results by achieving state-of-the-art perfor-
mance in inference tasks [7]. Although photon-
ics is operating faster than electronic hardware,
the latter scales better and can therefore achieve
higher throughput by parallelization. Electronic
hardware is therefore tailored for low power sig-
nal processing.

In Arnold et al. [8], we design and evaluate an
SNN equalizer in a software simulation for the de-
tection of a pulse amplitude modulation 4-level
(PAM4) signal for an intensity-modulation / direct-
detection (IM/DD) link, impaired by CD and ad-
ditive white Gaussian noise (AWGN). The results
show that in principle, SNNs can perform as well
as nonlinear artificial neural network (ANN) equal-
izers, outperforming linear equalizers.

However, to assess the applicability of SNNs
for equalization in practical systems, evaluation in

o

Fig. 1: A BrainScaleS-2 application-specific integrated circuit
(ASIC) bonded to a carrier board. The chip is about
4mm x 8mm in size.

hardware is essential.

In this work, we design and implement SNNs
for joint equalization and demapping on the
mixed-signal neuromorphic BrainScaleS-2 (BSS-
2) system [5] displayed in Fig. [l We showcase
that an SNN equalizer/demapper trained on the
analog substrate efficiently detects a PAM4 sig-
nal of an IM/DD link enabling a 200 Gbit/s trans-
mission with 12 % overhead hard-decision forward
error correction (FEC), outperforming numeric lin-
ear equalization. Furthermore, we compare the
bit error rate (BER) achieved on BSS-2 to ANN
and SNN equalizers simulated in software.

Simulated IM/DD Link

As an application scenario, we simulate a
200 Gb/s IM/DD transmission over 4 km in the O-
band. We assume a 12% overhead FEC with
a BER threshold 2 x 10~3 and a corresponding
baudrate of 112GBd. Our model is displayed
in Fig. [ZA and parameters are summarized in
Fig. [2C. A bit sequence ([B;Bs]!);en is mapped
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to a PAM4 signal, which is upsampled and fil-
tered with a root-raised-cosine (RRC), after which
a positive bias is added. Transmission through
the fiber is then simulated by applying CD. At the
receiver, a photodiode (PD) squares the signal
and AWGN is added. The signal is then RRC fil-
tered and downsampled. The resulting sequence
(y')ien is equalized and demapped, resulting in
the bit decisions ([B Bs]")¢en-

Spiking Neural Network Equalizer/Demapper
Besides minor adaptations, we consider an SNN
equalizer/demapper as described in our recent
work [8] and which we summarize next. Our SNN
architecture has one hidden layer of 40 leaky-
integrate and fire (LIF) neurons [4, Sec. 1.3], pro-
jecting spike events onto four leaky-integrate (LI)
readout neurons [4, Sec. 1.3]. The membrane po-
tential v; of LIF neurons is described by the ordi-
nary differential equation (ODE)

Tm0;(p) = — (vj(p) — ) + L;(p), (1)

with v the leak potential, 7, the membrane time
constant and I; the current onto neuron j caused
by pre-synaptic events. As v; exceeds a threshold
¥, neuron j sends out a spike at time p; and is
set to a reset potential v.. The current I; onto
neuron j is given by the exponentially filtered pre-
synaptic spike train,

L) =33 Wi (o — o) exp (p’f - p) @

i {01 Tsyn

with synaptic time constant 75y, and p; the spike
times of the pre-synaptic neurons {i}fznl'. The
membrane potential v, of LI neurons is subject
to the same dynamics, without the ability to spike.
That is, current I, caused by spikes of the hid-
den LIF neurons {j fjg is integrated onto the LI
membranes.

For demapping a transmitted sample 3¢, we as-
sign each sample yf € C = [yt~ L"w/2] yt+lme/2]]
(ntap 0dd and I € N;™ indexing C) n" = 10
input neurons, emitting spikes at times p; with
i =n® .+ hand h € NF™ . Note that
the time p is the time axis within the time frame
between two samples at time steps ¢t and ¢ + 1.
The spike times p; are given by a linear scaling
of the distances of y} to reference points x;,. Fi-
nally, y* is labeled with the class k¥ € {0,1,2,3}
for which the corresponding readout neuron has
the maximum membrane value over time, i.e.

argmax, max, vx(p). Thus, the network’s objec-

tive is to learn to adjust the hidden neurons such
that their spikes tune the membrane potentials of
the output neurons meaningfully.

Because of the non-differentiable output of
spiking LIF neurons, we use surrogate gradi-
ents (SuperSpike [9]) in conjunction with back-
propagation through time (BPTT) to train our
SNNs. Weights are optimized with the Adam op-
timizer [10].

BrainScaleS-2 System

We deploy our SNN equalizer/demapper on the
accelerated mixed-signal neuromorphic BSS-2
system, developed at Heidelberg University [9] in
Germany. A photo of the chip is shown in Fig.
On its analog neural network core, it emulates up
to 512 LIF neurons and 128 k synapses in analog
circuits in parallel and in continuous time. Hard-
ware synapses have 6-bit weights, which can be
configured as inhibitory (negative sign) or excita-
tory (positive sign). The neurons communicate
via digital spike events. Each neuron is parame-
terized individually to exhibit the desired dynamic.
LI neurons can be realized by disabling the spik-
ing mechanism. To facilitate training, BSS-2 pro-
vides a columnar ADC (CADC) allowing to read
out neuron membrane voltages in parallel. Ef-
fectively, this allows ITL learning with surrogate
gradients [7] where the forward pass is performed
on-chip and weight updates are computed on the
host computer [6].

For training our SNNs on the BSS-2 system
we utilize the PyTorch-based [11] software frame-
work hxtorch.snn supporting network execution
on hardware and in simulation [12]. The BSS-
2 software stack translates the high-level exper-
iment description into a corresponding hardware
configuration including stimulus data, uploads the
experiment to an FPGA-based real-time exper-
iment controller, and post-processes recorded
output data.

Processing one sample y* by the BSS-2 takes
30us. In practical implementations, this can be
speeded up, furthermore, many samples can be
processed in parallel for achieving the required
throughput.

Results

In Fig. 2B, we plot the BERs achieved with the 7-
tap SNN equalizer/demapper, trained in software
and on the analog BSS-2 system. For compar-
ison, we also plot the BERs of software linear
minimum mean square error (LMMSE) equaliz-
ers followed by a demapper with BER-optimized
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Fig. 2: (A) Simulated IM/DD link. Schematic taken from Arnold et al. . (B) Comparison of BER results for transmission over a
simulated IM/DD link with PAM4 constellations. (C) Considered IM/DD parameters. (D) NN parameters of demappers used. (E)
Experiment observables of a single run recorded on BSS-2. (F) Weight matrices learned on BSS-2.

decision boundaries. As further references, we
train software ANN equalizer/demappers with one
and two hidden layers, see Fig. 2D. We ob-
serve that the simulated SNN performs better
than the ANNs. The results show that the 7-
tap SNN equalizer/demapper trained on BSS-2
outperforms the 7-tap LMMSE. For a BER of
2 x 1073, we observe a hardware penalty of less
than 1dB between the simulated SNNs and the
BSS-2 SNN.

Figure [2E exemplifies the evolution of the hid-
den LIF neurons’ analog membrane potentials v;
(upper) and their spikes (center) together with the
readout traces vy, (lower) along the time p on the
BSS-2 system. The hidden spikes push the mem-
brane of the correct readout neuron k& = 2 up-
wards while suppressing the traces of the other
neurons k£ = 0,1,3, indicating a confident deci-
sion. The corresponding weight matrices W™ and
Wh are depicted in Fig. [2F. The weights of the in-
put neurons, receiving events from the central tap,
are dominating since they encode the sample to
classify, y°.

Conclusions

In this work, we have implemented an SNN on
the mixed-signal neuromorphic hardware system
BrainScaleS-2 (BSS-2). While we observed a
hardware penalty slightly below 1dB at a BER
of 2 x 1073, the BSS-2 SNN outperforms a sim-

ulated linear equalizer with the same number of
taps, thanks to nonlinear processing.

The presented results confirm that neuromor-
phic hardware can provide the reliability required
by signal processing in optical transceivers.
Promising directions for future research include
reducing the hardware penalty, reducing the ar-
chitectural complexity and increasing the intrinsic
speed of the SNN, and optimizing the input and
output interfaces of the SNN. Furthermore, pro-
cessing by the SNN must be parallelized. Also,
the effective power consumption of neuromorphic
signal processing should be analyzed and com-
pared to digital processing.

In a future hardware implementation, spikes
could be generated directly from the electrical sig-
nal coming from the photo diode, thereby replac-
ing the power-hungry analog-to-digital converter
(ADC). In this work, we have considered hard de-
cision demapping. Another interesting direction
is the design of an SNN equalizer/demapper with
soft output.
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