ThiC.1

Nonlinear Component Equalization:
A Comparison of Deep Neural Networks and Volterra Series

Maximilian Schadler", Georg Bocherer("), Francesca Diedolo®, Stefano Calabro(")

() Huawei Munich Research Center, Riesstr. 25, 80992 Munich, Germany @ Technical University of
Munich, Theresienstr. 90, 80333 Munich, Germany, maximilian.schaedler@huawei.com

Abstract

Coherent optical transmission systems suffer from distortions induced by nonlinear com-

ponents. As a countermeasure, Volterra equalizers and deep neural networks have attracted growing
attention. In this paper, optimal objectives to maximize achievable rates as well as performance and
complexity aspects are discussed. ©2022 The Author(s)

Introduction

In optical fiber communication, especially in short
reach communication, optical and electrical com-
ponents introduce non-linearities, which require
effective compensation to attain highest data
ratest!). Equalizers based on truncated Volterra
series are a popular countermeasure for receiver-
side equalization of nonlinear component im-
pairments and their memory effects. However,
Volterra nonlinear equalizer (VNLE) architectures
are generally very complex.

This contribution investigates time delay deep
neural network (TDNN) architectures as an alter-
native for nonlinear equalization and places spe-
cial attention on hard and soft-demapping and
on the corresponding loss functions. The paper
makes use of the following publicationst&-.
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Fig. 1: Blockdiagram of a VNLE.

Fig. [1]illustrates the structure of a VNLEIOH,
By combining linear convolution and non-linear
power series, the VNLE is capable to describe
time-invariant non-linear systems with finite fad-
ing memory. Let y(¢) and () represent a system
with single input and single output, respectively,
the p-th order causal discrete time Volterra series
is given byl
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where hy(si,---,s,) denotes the p-th order

Volterra kernel, M; the memory length for the lin-
ear terms and M to M, the memory lengths for
the non-linear terms of second order and higher.
The relationship between the memory length and
the number of kernels of order p is given byl
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Their number is directly connected to the required
number of multipliers®l
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Eaq. is derived from the structure presented
in"3 1t considers terms that can be obtained by
delaying other terms as well as the reuse of prod-
ucts of order k to compute products of order &+ 1.

Time Delay Deep Neural Network Equalizer
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Fig. 3: Blockdiagram of a TDNNE.
Fig. [3 shows the block diagram of a TDNNE with
multiple hidden layers. The memory is again con-
sidered by processing time delayed versions of
the observed signal. This allows the TDNNE to
have, similar to the VNLE, a finite dynamic re-
sponse to time series input data and to describe
causal time-invariant non-linear systems with fi-
nite fading memory. Compared to the VNLE,
which represents the solutions of nonlinear differ-
ential systems based on its Volterra series and
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Fig. 2: Simulated link. (a) AWGN channel (b) Nonlinear Channel y = tanh(filter(z) 4+ 0.2) with 13 taps.

hence models non-linearities with polynomials,
the TDNNE computes the solutions to a large
class of general nonlinear systems on basis of
the nonlinear activation functions. The mem-
ory length M of the TDNNE step delay line is
a single parameter, while the memory length of
each Volterra order is individually adjustable. Let
y(i)=[y(i=M),. .., y(i),. .., y(c4M)] denote the de-
layed symbol-level input vector, the TDNNE with
L-layers is given by

al’l (i) =y(i), (4)
al(@iy=gWlal=UG) + by, 1=1...,L (5)
j(i)=al") (i) (6)

where al! denotes the output vector of the I-th

layer, W the weight matrices and b the bias

vectors. For the activation function g, we use

the non-linear ReLU function for the hidden layers

and the linear function for the output layer. The to-

tal required number of multipliers is defined as®!
L—-1 L—1

Nowionne = Y sisici+ _si, (7)

SD-FEC. For maximizing the achievable rate, a
more appropriate approach is to train an equalizer
using the Binary-Cross-Equivocation (BCE) loss

L(b,£) =logsy[1 + exp(—(1 — 2b)?)], (8)
where b is the transmitted bit and where ¢ is the
soft-demapper output. To optimize an equalizer
w.r.t. the BCE loss the soft-demapper has to
be differentiable in order to propagate the gradi-
ent backwards through the soft-demapper to the
equalizer. In this paper a max-log approximation
(MLA) soft demapper is used. The MLA uses
piecewise differentiable linear approximations as
shown in Fig. [5| for the case of Gray mapped
4ASK. During training the BCE loss uses +oo as
targets for the soft-bits, corresponding to 0 and
1. This pushes the outer constellation points to-
wards infinity. To counteract this effect we intro-
duce a penalty function represented by the green
line in Fig.[5] An alternative solution to this prob-
lem is shown in™ where an entropy-regularized
MSE based loss function is proposed.
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Before operations, the parameters of the VNLE
and the TDNNE have to be identified, i.e., con-
figured upon training data, in order to match the
non-linearities of interest. We consider the sce-
nario of Fig. [4, where the nonlinear equalizer is
followed by a soft-demapper, generating the soft-
bits for the FEC decoder.

y(i) ~(Equalizer}- 5(i) GG, b (i)

b
(1)
b1(d),. .., bm(2) BCE

Fig. 4: Blockdiagram of the training process.

It has been shown that the training with re-
spect to the mean square error (MSE) between
the equalizer’s output ¢(i) and the target symbols
x(i) with 1 sample-per-symbol (SpS) each min-
imizes the pre-FEC SER, however, it does not
maximize the achievable rate of a system with

Input

Fig. 5: Transfer function of the MpLA soft-demapper (4ASK).
Numerical Study over an AWGN Channel
To highlight the advantages of the BCE loss, we
first consider option (a) in Fig. [2, i.e., an AWGN
channel without any impairments. Fig. [7] depicts
the performance in terms of BER and information
rate when a 5th-order VNLE or a TDNNE with
1 tap is applied. Both architectures are trained
w.r.t to MSE or BCE. While all equalizers achieve
optimal performance in terms of BER, regard-
less of which loss is used for training, only the
equalizers trained w.r.t BCE achieve optimal per-
formance in terms of information rate.

Fig.[6|shows the learned transfer functions (TF)
and the corresponding histograms of the equal-
ized signals. The MSE trained non-linear equal-
izers have the ability of concentrating the con-
stellation points and to saturate the possible out-
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(b) TDNNE with 1 tap, 2 hiddenlayers and 4 neurons each.

Fig. 6: Output histograms and TF of the non-linear equalizers trained w.r.t to MSE (left) and BCE (right). Also shown is the TF
based on the extracted Volterra kernels, proposed by D.I. Soloway- of order k = 1,2, 3 at z = 0 from the MSE-trained TDNNE
with tanh instead of ReLU. According to Taylor’s theorem, this approach is only valid in a limited area, hence it is non applicable.
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Fig. 7: Equalizers applied on an AWGN channel.

puts to the target points, in order to reach a low
value of the cost function, i.e., to reach the optimal
MSE for non-linear equalization®. This satura-
tion causes non-Gaussian distributed noise and
induces soft information loss which impairs the
evaluation of the soft-bits by the soft-demappers.
This behavior is more pronounced for VNLEs
with higher orders, for deeper TDNNEs, and for
smaller constellation, respectively. In compari-
son, the output signals of the BCE trained equal-
izers exhibit Gaussian distributed noise.

Numerical Study over a Non-linear Channel

To compare the equalization performances and
complexities in a non-linear scenario, we consider
option (b) in Fig. The non-linear component
emulates a driver/MZM-modulator. It exhibits a
bandwidth limitation and hence introduces inter-
symbol interference (ISI) as well as a non-linear
distortion by a tanh(z + offset). Fig. [ shows
the performance in terms of BCE by applying a
linear equalizer, a VNLE and a TDNNE. All ar-
chitectures are optimized regarding complexity,
e.g., the VNLE architectures are optimized with
respect to the number of taps. However, the archi-
tectures are not pruned, hence fully connected.
A comparison of pruned VNLE and TDNNE can
be found in®. It can be observed that 1st, 2nd
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Fig. 8: Equalizers applied on a non-linear channel.

and 3rd order kernels yield the major benefit. 1st-
order kernels compensate for ISI, 2nd-order ker-
nels are pronounced due to the presence of an
offset (e.g. bias voltage), while the 3rd-order ker-
nels compensate for the tanh behavior. How-
ever, the best performance and complexity trade-
off can be achieved with the TDNNE architecture.
All options outperform all VNLE architectures with
equal complexity. This indicates that in this sce-
nario, where typical optoelectronic components
are considered, the ReLUs of the TDNNE approx-
imate systematic non-linearities more efficiently
than the polynomials of a 5th-order VNLE.

Conclusions

The growing demand for non-linear equalizers
has motivated investigations in optimal objec-
tives for soft-decision FEC scenarios. Applied
to Volterra non-linear equalizers and time de-
lay deep neural network equalizers, it is shown
that deep neural networks reflect typical non-
linearities more accurately and efficiently than
Volterra series. This makes deep neural networks
a promising candidate for mid-term deployment in
non-linearity impaired optical systems.
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