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Abstract Coherent optical transmission systems suffer from distortions induced by nonlinear com-
ponents. As a countermeasure, Volterra equalizers and deep neural networks have attracted growing
attention. In this paper, optimal objectives to maximize achievable rates as well as performance and
complexity aspects are discussed. ©2022 The Author(s)

Introduction
In optical fiber communication, especially in short
reach communication, optical and electrical com-
ponents introduce non-linearities, which require
effective compensation to attain highest data
rates[1]. Equalizers based on truncated Volterra
series are a popular countermeasure for receiver-
side equalization of nonlinear component im-
pairments and their memory effects. However,
Volterra nonlinear equalizer (VNLE) architectures
are generally very complex.

This contribution investigates time delay deep
neural network (TDNN) architectures as an alter-
native for nonlinear equalization and places spe-
cial attention on hard and soft-demapping and
on the corresponding loss functions. The paper
makes use of the following publications[2]–[9].
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+ ỹ(i)
Non-linear Volterra Kernels

Fig. 1: Blockdiagram of a VNLE.

Fig. 1 illustrates the structure of a VNLE[10],[11].
By combining linear convolution and non-linear
power series, the VNLE is capable to describe
time-invariant non-linear systems with finite fad-
ing memory. Let y(i) and ỹ(i) represent a system
with single input and single output, respectively,
the p-th order causal discrete time Volterra series
is given by[12]

ỹ(i)=

P∑
p=1

M1∑
s1=0

· · ·
Mp∑
sp=0

hp(s1,· · ·, sp)
p∏

k=1

y(i−sk), (1)

where hp(s1, · · · , sp) denotes the p-th order

Volterra kernel, M1 the memory length for the lin-
ear terms and M2 to Mp the memory lengths for
the non-linear terms of second order and higher.
The relationship between the memory length and
the number of kernels of order p is given by[3]

Np =
1

p!

p−1∏
i=0

(Mp + i). (2)

Their number is directly connected to the required
number of multipliers[3]

Nmul-VNLE = N1 +

P∑
i=2

Ni︸ ︷︷ ︸
Kernels

+ Mi + 1︸ ︷︷ ︸
Feature Matrix[13]

. (3)

Eq. (3) is derived from the structure presented
in[13]. It considers terms that can be obtained by
delaying other terms as well as the reuse of prod-
ucts of order k to compute products of order k+1.
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Fig. 3: Blockdiagram of a TDNNE.

Fig. 3 shows the block diagram of a TDNNE with
multiple hidden layers. The memory is again con-
sidered by processing time delayed versions of
the observed signal. This allows the TDNNE to
have, similar to the VNLE, a finite dynamic re-
sponse to time series input data and to describe
causal time-invariant non-linear systems with fi-
nite fading memory. Compared to the VNLE,
which represents the solutions of nonlinear differ-
ential systems based on its Volterra series and
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Fig. 2: Simulated link. (a) AWGN channel (b) Nonlinear Channel y = tanh(filter(x) + 0.2) with 13 taps.

hence models non-linearities with polynomials,
the TDNNE computes the solutions to a large
class of general nonlinear systems on basis of
the nonlinear activation functions. The mem-
ory length M of the TDNNE step delay line is
a single parameter, while the memory length of
each Volterra order is individually adjustable. Let
y(i)=[y(i−M),. . ., y(i),. . ., y(i+M)] denote the de-
layed symbol-level input vector, the TDNNE with
L-layers is given by

a[0](i)=y(i), (4)

a[l](i)=g(W [l]a[l−1](i) + b[l]), l=1,. . ., L (5)

ỹ(i)=a[L](i) (6)

where a[l] denotes the output vector of the l-th
layer, W [l] the weight matrices and b[l] the bias
vectors. For the activation function g, we use
the non-linear ReLU function for the hidden layers
and the linear function for the output layer. The to-
tal required number of multipliers is defined as[3]

Nmul-TDNNE =

L−1∑
i=1

sisi+1︸ ︷︷ ︸
Weights

+

L−1∑
i=2

si︸ ︷︷ ︸
Activation Function

(if slope ̸= 1)

, (7)

where s = s0|s2| . . . |sL denotes the design, i.e.,
si is the number of neurons in the i-th layer.

Training of Linear and Non-linear Equalizer
Before operations, the parameters of the VNLE
and the TDNNE have to be identified, i.e., con-
figured upon training data, in order to match the
non-linearities of interest. We consider the sce-
nario of Fig. 4, where the nonlinear equalizer is
followed by a soft-demapper, generating the soft-
bits for the FEC decoder.

y(i)

x(i)
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Fig. 4: Blockdiagram of the training process.

It has been shown that the training with re-
spect to the mean square error (MSE) between
the equalizer’s output ỹ(i) and the target symbols
x(i) with 1 sample-per-symbol (SpS) each min-
imizes the pre-FEC SER, however, it does not
maximize the achievable rate of a system with

SD-FEC. For maximizing the achievable rate, a
more appropriate approach is to train an equalizer
using the Binary-Cross-Equivocation (BCE) loss

L(b, ℓ) = log2[1 + exp(−(1− 2b)ℓ)], (8)

where b is the transmitted bit and where ℓ is the
soft-demapper output. To optimize an equalizer
w.r.t. the BCE loss the soft-demapper has to
be differentiable in order to propagate the gradi-
ent backwards through the soft-demapper to the
equalizer. In this paper a max-log approximation
(MLA) soft demapper is used. The MLA uses
piecewise differentiable linear approximations as
shown in Fig. 5 for the case of Gray mapped
4ASK. During training the BCE loss uses ±∞ as
targets for the soft-bits, corresponding to 0 and
1. This pushes the outer constellation points to-
wards infinity. To counteract this effect we intro-
duce a penalty function represented by the green
line in Fig. 5. An alternative solution to this prob-
lem is shown in[14], where an entropy-regularized
MSE based loss function is proposed.

6 4 2 0 2 4 6
Input

5

0

5

ou
tp

ut

0

1
2 (penalty function)

alphabet

Fig. 5: Transfer function of the MLA soft-demapper (4ASK).

Numerical Study over an AWGN Channel
To highlight the advantages of the BCE loss, we
first consider option (a) in Fig. 2, i.e., an AWGN
channel without any impairments. Fig. 7 depicts
the performance in terms of BER and information
rate when a 5th-order VNLE or a TDNNE with
1 tap is applied. Both architectures are trained
w.r.t to MSE or BCE. While all equalizers achieve
optimal performance in terms of BER, regard-
less of which loss is used for training, only the
equalizers trained w.r.t BCE achieve optimal per-
formance in terms of information rate.

Fig. 6 shows the learned transfer functions (TF)
and the corresponding histograms of the equal-
ized signals. The MSE trained non-linear equal-
izers have the ability of concentrating the con-
stellation points and to saturate the possible out-
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(a) 5th-order VNLE with 1 tap each.
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(b) TDNNE with 1 tap, 2 hiddenlayers and 4 neurons each.
Fig. 6: Output histograms and TF of the non-linear equalizers trained w.r.t to MSE (left) and BCE (right). Also shown is the TF

based on the extracted Volterra kernels, proposed by D.I. Soloway[15], of order k = 1, 2, 3 at x = 0 from the MSE-trained TDNNE
with tanh instead of ReLU. According to Taylor’s theorem, this approach is only valid in a limited area, hence it is non applicable.
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Fig. 7: Equalizers applied on an AWGN channel.

puts to the target points, in order to reach a low
value of the cost function, i.e., to reach the optimal
MSE for non-linear equalization[16]. This satura-
tion causes non-Gaussian distributed noise and
induces soft information loss which impairs the
evaluation of the soft-bits by the soft-demappers.
This behavior is more pronounced for VNLEs
with higher orders, for deeper TDNNEs, and for
smaller constellation, respectively. In compari-
son, the output signals of the BCE trained equal-
izers exhibit Gaussian distributed noise.

Numerical Study over a Non-linear Channel
To compare the equalization performances and
complexities in a non-linear scenario, we consider
option (b) in Fig. 2. The non-linear component
emulates a driver/MZM-modulator. It exhibits a
bandwidth limitation and hence introduces inter-
symbol interference (ISI) as well as a non-linear
distortion by a tanh(x + offset). Fig. 8 shows
the performance in terms of BCE by applying a
linear equalizer, a VNLE and a TDNNE. All ar-
chitectures are optimized regarding complexity,
e.g., the VNLE architectures are optimized with
respect to the number of taps. However, the archi-
tectures are not pruned, hence fully connected.
A comparison of pruned VNLE and TDNNE can
be found in[3]. It can be observed that 1st, 2nd

100 101 102 103

Multipliers

10 1

3 × 10 2

4 × 10 2

6 × 10 2

BC
E 

(b
it)

Linear Equalizer (BCE)
Linear Equalizer (MSE)
VNLE 2nd-order (BCE)
VNLE 2nd-order (MSE)
VNLE 3rd-order (BCE)
VNLE 3rd-order (MSE)
VNLE 5th-order (BCE)
VNLE 5th-order (MSE)
TDNNE (BCE)
TDNNE (MSE)

Fig. 8: Equalizers applied on a non-linear channel.

and 3rd order kernels yield the major benefit. 1st-
order kernels compensate for ISI, 2nd-order ker-
nels are pronounced due to the presence of an
offset (e.g. bias voltage), while the 3rd-order ker-
nels compensate for the tanh behavior. How-
ever, the best performance and complexity trade-
off can be achieved with the TDNNE architecture.
All options outperform all VNLE architectures with
equal complexity. This indicates that in this sce-
nario, where typical optoelectronic components
are considered, the ReLUs of the TDNNE approx-
imate systematic non-linearities more efficiently
than the polynomials of a 5th-order VNLE.

Conclusions
The growing demand for non-linear equalizers
has motivated investigations in optimal objec-
tives for soft-decision FEC scenarios. Applied
to Volterra non-linear equalizers and time de-
lay deep neural network equalizers, it is shown
that deep neural networks reflect typical non-
linearities more accurately and efficiently than
Volterra series. This makes deep neural networks
a promising candidate for mid-term deployment in
non-linearity impaired optical systems.
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