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Abstract We show that the interplay between spatial mode dispersion (SMD) and the modulation format
has a substantial impact on cross-phase modulation (XPM) in space-division multiplexed systems with
strongly coupled modes. We propose a simple formula to account for SMD in the modulation-format-
dependent XPM contribution. c©2022 The Author(s)

Introduction

The study of the nonlinear cross-talk between
the optical paths of a space-division multiplexed
(SDM) system[1],[2] is particularly challenging due
to the presence of spatial mode dispersion
(SMD), that is responsible for introducing a crit-
ical layer of complexity in the analysis. While
mode dispersion is typically negligible in single-
mode transmission systems, it plays a key role
for SDM systems where it can reach much larger
values[3],[4]. When linear equalization is feasible at
the receiver, high values of SMD are beneficial to
mitigate nonlinear cross-talk in strongly-coupled
SDM systems[1],[5],[6].

As the characterization of the optical fiber non-
linearities becomes non-trivial in SDM systems,
simple perturbative models, originally derived for
single-mode transmissions, play a pivotal role.
Of particular interest is the Gaussian noise (GN)
model[7] for the estimation of the nonlinear inter-
ference (NLI) variance. This model was extended
in[8] to SDM links without accounting for the ef-
fects of SMD between strongly-coupled modes.

The conservative prediction of the GN model
was improved by including the consideration
of the modulation format[9]–[12]. In particular,
the SMD impact on the cross-phase modulation
(XPM) variance was modeled in[11] for large SMD
values while neglecting the effect of SMD within
individual channels. Arbitrary values of SMD have
been accounted for in[13] for self-phase modula-
tion (SPM) only and in[14] by using Ito’s calculus.
In[14] we characterized the dependence of the NLI
variance on the amount of SMD under the as-
sumption of Gaussian modulation, and showed
that an SMD value minimizing the XPM variance
in strongly-coupled transmissions exists.

In this work, we extend the investigation of[14]

by looking into the role of the modulation format
in the interaction between Kerr effect and mode

dispersion. We observe a substantial impact and
provide a simple formula to estimate it.

Numerical analysis
At first, we investigated the joint impact of SMD
and modulation format on the XPM variance via
numerical simulations. We performed split-step
Fourier method (SSFM) simulations based on a
waveplate model of the optical fiber[15]. We con-
sidered an optical fiber carrying N = 2 spa-
tial modes for a total of 4 strongly-coupled po-
larization modes. The fiber had dispersion 17

ps/(nm·km), attenuation 0.2 dB/km and nonlinear
coefficient[1] 1.26

2N (W · km)−1. We transmitted ran-
dom sequences of 217 symbols on each space
and frequency channel.

We estimated the XPM variance for a single-
span link of 100 km, where the dependence on
the modulation format is stronger[9],[16]. In each
spatial mode, we sent two wavelength division
multiplexing (WDM) channels spaced away 100
GHz, for a total of 8 independent channels. The
data were digitally modulated by complex Gaus-
sian distributed symbols, quadrature shift-keying
(QPSK), or 16 quadrature amplitude modulation
(16QAM) at a symbol rate of 49 Gbaud.

Figure 1 shows the XPM variance per-
polarization as a function of the SMD
coefficient[14], where the results are repre-
sented in the form of a histogram extracted from
500 independent realizations of the random-
mode coupling process. As observed in[14] for the
same setup, the XPM variance for the Gaussian
case exhibits a minimum around 8 ps/

√
km

where the XPM variance reduction due to SMD is
approximately 1.5 dB.

Surprisingly, Fig. 1 shows that such a variance
reduction grows for 16QAM and QPSK transmis-
sions. In particular, the QPSK curve exhibits up to
approximately 4.5 dB of XPM variance reduction
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Fig. 1: XPM variance vs SMD coefficient. N = 2 strongly
coupled modes. Gaussian distributed symbols, 16QAM or
QPSK modulation. Single span of 100 km. SSFM results

histogram for 500 realizations.

thanks to the beneficial effect of SMD. The numer-
ical results reported in Fig. 1 suggest that the role
of the modulation format in setting the NLI is SMD
dependent, yielding, in this setup, a relevant extra
reduction of up to 3 dB wrt to the case in which
SMD is absent.

Motivated by such non-negligible XPM mitiga-
tion, we extended the GN theory in[14] to include
SMD on the format-dependent contribution to the
XPM variance.

Results
According to perturbative theory, the NLI variance
can be expressed as

σ2
NLI = σ2

NLI,GN − σ2
NLI,FON + σ2

NLI,HON (1)

where σ2
NLI,GN is the contribution to the NLI vari-

ance provided by second-order symbol statis-
tics (aka GN contribution) while σ2

NLI,FON and
σ2

NLI,HON account for the fourth-order noise
(FON) and higher-order noise (HON) contribution,
respectively[9],[10],[16]. While the GN term depends
on the transmitted symbols only through their av-
erage power, the FON and HON terms carry in-
formation also on the modulation format. The
FON contribution in Eq. (1), which is the domi-
nant format-dependent part, is negative and thus
acts as a correction to the over-estimate of the
NLI variance given by the GN model[9],[10].

Unfortunately, the inclusion of SMD in the non-
GN contributions in Eq. (1) prevents the deriva-
tion of analytical solutions. Nevertheless, the
analysis of XPM can be significantly simplified,
along the lines of[14], by neglecting the effects of
SMD within individual WDM channels. This is
equivalent to assuming that different WDM chan-
nels experience different random-mode coupling
processes, whereas random-mode coupling is
constant within the bandwidth of each channel.
The idea is sketched in Fig. 2 .

Fig. 2: Sketch of SMD-induced depolarization: (a) different
for all frequencies, and (b) approximated as identical for all

the frequencies within individual WDM channels.

Under this simplifying assumption, we derived
the following expression for the FON contribution
to the XPM variance:

σ2
XPM,FON =

1

2N

[
(2N + 1)2σ2

1(α)+

(2N − 1)

(
α+ ∆ω2µ2

N

)
α

σ2
1

(
α+

∆ω2µ2

N

)]
(2)

where α is the attenuation, ∆ω is the spacing be-

tween WDM channels, and µ =
√

N3

4N2−1ηSMD

with ηSMD the SMD coefficient[14],[17]. The term
σ2

1(α) represents the per-polarization FON con-
tribution to the XPM variance in the absence of
polarization-dependent effects[9]. Since HON is
negligible for cross-channel effects[16], we limited
the analysis to the derivation of the FON contribu-
tion. Equation 2 is the central result of this work.

We then performed SSFM simulations to as-
sess the accuracy of the proposed simplified for-
mula. To this aim, we extracted the FON contri-
bution to the XPM variance from SSFM results
as σ2

XPM,FON ≈ σ2
XPM,QPSK − σ2

XPM,GN, where
the last two terms were estimated via QPSK and
Gaussian simulations. The SSFM results, aver-
aged over 500 random seeds, are plotted with
markers in Fig. 3(top) for the single-span setup
of Fig. 1 , and in Fig.3(bottom) for 5 spans.

The theoretical results are also shown, by
means of solid curves, in the same figure, where
the FON contribution to the XPM variance is a plot
of the newly derived expression Eq. (2). We ob-
serve that this contribution spans a much smaller
range compared to the GN term. This observa-
tion supports the use of the simplified formula,
which captures the main features of the FON con-
tribution across the relevant range of SMD val-
ues, thus yielding a very accurate estimate of
the XPM variance for QPSK transmission. In
particular, while the GN model predicts a maxi-
mum XPM reduction of approximately 1.5 dB at
ηSMD = 8 ps/

√
km, its correction through the pro-

posed formula allows us to correctly predict a re-
duction of approximately 4.5 dB after one span
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Fig. 3: XPM variance vs SMD coefficient after one (top) and
five spans (bottom). Other parameters as in Fig. 1 . Markers:
SSFM results for QPSK (squares) and the corresponding GN

(triangles) and FON (circles) contributions. Lines: theory.

when QPSK is considered. The XPM variance
decrease reduces to 2 dB after 5 spans, as shown
in Fig. 3(bottom), due to a smaller FON correc-
tion. Figure 3 allows us to note that the larger
SMD-induced XPM-reduction for the QPSK is due
to the large relative importance of the FON cor-
rection around the value of the SMD coefficient at
which the GN contribution reaches a minimum.

While we limited SSFM simulations to 5 spans
in order to collect results for a statistically mean-
ingful number of random seeds, the observed
qualitative behavior persists even for longer links,
where the FON correction is less relevant[16]. This
is clarified in Fig. 4 , where, by exploiting the
novel formula, we report a theoretical estimation
of the XPM reduction at ηSMD = 8 ps/

√
km with

respect to its value in the absence of SMD, as a
function of the number of spans Ns. It can be
seen that the reduction remains unchanged for
a Gaussian transmission, as the XPM variance
scales with Ns (in linear scale) for any SMD co-
efficient. On the other hand, the XPM reduction
for 16QAM and QPSK decreases without reach-
ing the GN value, thus suggesting the importance
of the FON contribution even for long-haul links.

Finally, we investigated the transmission of Nch

WDM channels per mode spaced 75 GHz mod-
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Fig. 4: XPM variance reduction at SMD coefficient 8 ps/
√

km
wrt the no SMD case vs number of spans.
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Fig. 5: NLI variance vs number of WDM channels at 75 GHz
spacing modulated with QPSK. N = 2 strongly-coupled

modes propagation along a 5× 100 km link with fixed SMD
coefficient. Markers: SSFM simulations. Lines: theory.

ulated with QPSK symbols at 64 Gbaud over a
5 × 100 km link. In Fig. 5 we report the NLI vari-
ance resulting from SSFM simulations (markers)
and the theory (lines), as a function of Nch for
three fixed values of the SMD coefficient. The
theory here includes also the SMD impact on
the SPM variance of FON and HON contributions
through the scaling rule in[13]. The GN contribu-
tion, modeled via[14], included all four-wave mix-
ing processes[9]. The excellent agreement be-
tween theory and simulations is self-evident and
it comes with computation times that are orders
of magnitude smaller.

Conclusions

We showed via numerical simulations that the im-
pact of SMD on the NLI variance strongly de-
pends on the modulation format. We thus ex-
tended the GN model in[14] to account for the ef-
fect of mode dispersion on the format-dependent
contributions of the NLI variance. The proposed
model shows good accuracy against SSFM sim-
ulations and constitutes a useful tool for quickly
assessing the performance of SDM systems.
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