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Abstract Multi-core fiber (MCF) technology has advanced considerably since the capacity limit of the 
single-mode fiber had been posed. This talk will review such advancements in the design aspects and 
deployment trials of MCFs, which have demonstrated technical feasibility of MCF technology in the field. 
©2022 The Author(s) 

Introduction 
The transmission capacity of single mode fiber 
has been approaching its fundamental limit in 
research [1–3]. On the other hand, in new 
deployments of ultra-high-capacity submarine 
transmission systems, per-fiber design capacity 
is now stalled or even decreasing, and fiber count 
in each cable is rapidly increasing for higher 
system capacity under limited electric power 
supply to repeaters from land stations. The 
number of spatial channels are also increasing in 
short-reach networks for improving the 
performances of large-scale data centers (DCs).  

In such situations, multi-core fibers (MCFs) 
are attractive for achieving further higher spatial 
channel count without increasing cable size and 
connection footprint. The high spatial channel 
density of MCFs can also be beneficial to realize 
thin and light cable [4], which may greatly reduce 
the cost and environmental load of material, 
transportation, and installation of new cables. 

The concept of MCFs is not so new. The first 
MCF was proposed in late 1970s when 
multimode cores were still considered as 
transmission media for subscriber lines [5,6]. 
After single-mode fibers became dominant 
transmission media except for very short-reach 
links, very limited groups had studied single-
mode MCFs for communications from late 1980s 
to 1990s [7–9]. Since late 2000s, to cope with 
“capacity crunch” [10,11], the various groups 
have started intensive research and development 
of MCFs [12–15], and significant advancements 
have been made in the MCF technologies. 

In this talk, I will give a brief overview on MCF 
technology progress for optical communications. 
Types of MCFs 
MCFs can be divided into uncoupled MCFs (UC-
MCFS) and strongly-coupled MCFs. UC-MCFs 
are the MCFs where the crosstalk (XT) between 
cores is well suppressed so that each core can 
be used as an isolated spatial channel and is 
compatible to conventional transceivers. UC-
MCFs are sometimes called weakly-coupled 
MCFs or simply MCFs. Strongly-coupled MCFs 
are the MCFs where XT/coupling between cores 

is not negligible, and can be further divided into 
randomly-coupled MCFs (RC-MCFs) and 
systematically-coupled MCFs [16,17].  

RC-MCFs are the most major type of strongly-
coupled MCFs, in which the modes are strongly 
and randomly coupled over propagation, and 
neither supermodes nor local core modes stably 
propagate without modal coupling [17]. Although 
random coupling has to be compensated by 
MIMO DSP, the resultant properties, such as 
square-root/sublinear accumulations of modal 
dispersion (MD) and mode-dependent loss 
(MDL), are beneficial to suppress the calculation 
complexity and outage probability of MIMO DSP 
[19,20]. They are considered suitable for long-
haul transmissions. RC-MCFs are often called 
coupled MCFs, coupled-core fibers, or just 
strongly-coupled MCFs. 

Systematically-coupled MCFs are another 
type of strongly-coupled MCFs with the most 
strongly coupled cores, which act as a single 
micro-structured multi-mode waveguide system, 
supporting supermode propagation. The weakly-
coupled supermodes could be used for mode-
division multiplexing, but MIMO DSP is likely to 
be necessary for compensating XT, like few-
mode fiber transmissions. So, they have attracted 
little attention in optical communications.  

Today, UC-MCFs and RC-MCFs are two 
major types of MCFs for optical communications, 
and most of MCF transmission experiments have 
been conducted over UC-MCFs or RC-MCFs. 
Table I summarizes the difference among the 
MCF types. 
Core Layout and Cladding Diameter 
Unique features of MCF design are core count, 
layout, and pitch, to be designed such that the 
coupling between the cores can be kept to a 
preferable level and the core density (core count 
per fiber cross section) can be increased. The 
core pitch Λ is especially an important design 
parameter to control the mode coupling between 
cores both in UC-MCFs and RC-MCFs, as 
discussed in the following sections. The so-called 
outer cladding thickness (OCT, the minimum 
distance between a core center and cladding–
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coating interface) is also important to suppress 
the leakage (power coupling) of the light to the 
coating in the operation wavelength band [18–20]. 
A cladding diameter can also be a design 
parameter to increase the number of cores whilst 
assuring preferable optical properties [19,21–24]. 
However, the standard 125-µm cladding with 
field-proven reliability is a good starting point for 
early deployments of MCFs [25,26]. 
Uncoupled MCFs 
XT accumulation obeys the coupled power theory, 
because MCFs are randomly perturbed in their 
longitudinal direction by bends, twists, birefrin-
gence, and so on [14,19,27–30]. Core design 
and core pitch Λ determine the mode coupling 
coefficient κ, and are very important parameters, 
but fiber bend radius R, and the propagation 
constant mismatch Δβ, and correlation length lc 
between cores also have impacts on the phase 
matching between the cores, and hence the XT.  

The analytical expressions for XT (or power 
coupling coefficient h) can be found in [27]. 
Typical behaviours of XT are summarized in 
Fig. 1. If an MCF has very identical cores, h 
monotonically increases with h ≃ 2κ2R/(βΛ) at R < 
βΛlc but asymptotes to 2κ2lc at R > βΛlc. If an MCF 
has dissimilar cores, the bending radius Rpk = 
βΛ/Δβ becomes a threshold whether bend-
induced phase matching can strongly occur or 
not [28]. h is approximated by 2κ2R/(βΛ) at R << 
Rpk, and by 2κ2lc/[1+(Δβlc)2] at R >> Rpk. The 
physical interpretation of the relationship 
between XT and the fiber and perturbation 
parameters can be found in [28]. The longitudinal 
fluctuation of refractive index structure had been 
supposed to be the cause of the perturbation that 

determines lc [31], but random fiber twists [32], 
and birefringence and random polarization 
coupling [29,30] can more quantitatively explain 
how those parameters can affect lc. Microbends 
also affect lc [28]. From Fig. 1, one might think 
that heterogeneous MCFs with smaller Rpk are 
always better because they can realize lower XT 
in a wide range of R, but small Rpk requires large 
differences in refractive index profiles and optical 
properties between dissimilar cores. So, 
heterogeneous MCFs are not necessarily better 
than homogeneous MCFs, and the trade-off 
between lower XT and inhomogeneity of cores 
has to be considered. Therefore, decreasing κ 
with high confinement cores (high-Δ small-MFD 
cores, trench-assisted cores, etc.) and a proper 
Λ is very important for XT suppression. 

For long-haul transmissions where the 
product of signal bandwidth and inter-core skew 
is sufficiently large, the XT can be regarded as an 
additive white Gaussian noise on I-Q planes [33–
35]. Therefore, based on the GN-model [36], the 
SNR or fiber capacity under XT can be easily 
estimated [21,37,38]. Under the linear XT 
accumulation, 10−7 to 10−5 km−1 is considered as 
optimum XT level for suppressing SNR penalty 
and/or maximizing capacity per cross section [26].  

The bidirectional MCF transmission where 
signals counter-propagate between nearest 
neighboring cores is a promising technique to 
suppress the XT and realize performance-
improved MCF transmission systems [26]. In 
such systems, XT still has to be considered 
because of the effects of Rayleigh backscattering 
and back reflection from the counter-propagating 
signals in the nearest neighboring cores, and 
indirect XT of co-propagating signals via nearest 
neighboring cores [26,39]. 

Various UC-MCFs have been designed and 
reported by considering the above design factors. 
Table 2 shows some of representative UC-MCFs. 
Randomly-coupled MCFs 
Accepting random mode mixing, the 
requirements for core design of RC-MCFs can be 
much relaxed from UC-MCFs, because very high 
confinement of light to each core is not necessary 
to achieve the random mode mixing. So, RC-
MCFs are technically more suited to suppressing 
transmission loss. For enhancing random mode 
mixing to suppress MD and MDL accumulation, 

Tab. 1: MCF classification (modified from the tables in [16,17]). 

Fiber type Uncoupled MCF 
(Weakly-coupled) 

Strongly-coupled MCF 
Randomly-coupled MCF Systematically-coupled MCF 

Core pitch Λ Large Medium Small 
Mode coupling Weak between cores Strong & random Weak between supermodesa 

Dominant source of MD, MDL DGD, MDL between cores Both may affect DGD, MDL between supermodes 
Proportionality of MD, MDL  

to propagation distance 
Linear between spatial modes 

(Square root between pol.) 
Square root  

(or sublinear) Linear 
a: Mode coupling between cores is strong and systematic (deterministic). So, we refer to this type as systematically-coupled MCF. 

 
Fig. 1: XT vs fiber bend radius R of 0.01 to 100 m and Δβ 
corresponding to Rpk of ∞, 10 m, 1 m, 0.1 m, at κ = 0.01 m−1, 
Λ = 40 µm, lc = 0.1 m, λ = 1.55 µm, β = 1.444(2π/λ). 
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designing Λ requires comprehensive 
consideration taking account of various external 
perturbations like bends and twist 
randomness [16,40–42]. However, the earlier 
studies have indicated that the optimum Λ for 
random mode mixing ranges from 16 to 30 
µm [17]. R is also a very important factor on the 
coupling randomness; therefore, co-design of 
RC-MCF and cable is important to assure both Λ 
and R can be optimum in deployed condition, as 
discussed in the following sections. 

Table 2 also shows some of representative 
RC-MCFs. The detailed review on RC-MCF 
technology is also available in [17]. 
High-Density Ribbon MCF Cables 
State-of-the-art high-density optical fiber cables 
can accommodates SMFs with very high density 
thanks to the pliability of partially-bonded fiber 
ribbons [49], and are widely deployed as optical 
cables especially for hyperscale DCs and metro 
networks. MCFs can significantly increase the 
spatial channel count or decrease the size and 
weight of such high-density ribbon cables. Pliable 
fiber ribbons are stranded together in cables, and 
the bend radius of MCFs can be kept tighter than 
cable bending, which can supress/control the 
coupling of UC- and RC-MCFs [24,50]. High-
density UC-MCF ribbon cables have been 
installed in test sites of telecom carriers, and 
demonstrated low XT and successful signal 
transmissions even after deployment [25,51,52]. 
Loose-tube MCF Cables 
Loose-tube cables are also often used for small-
fiber-count cords/cables that does not need fiber 
ribbon structures and for ultra-low loss submarine 
cables. One might think that optical fibers in 
deployed loose-tube cables are very straight and 
the MCF coupling characteristics can degrade, 
but it is not the case. Optical fibers in loose-tube 
cables are also stranded with slight excess fiber 
length (for isolating the fibers from external 
tension to the cables), and stranding and excess 

fiber length can sufficiently introduce bends to 
MCFs to control their coupling 
characteristics [53,54].  

In 2019, the first deployment of an MCF cable 
in a real city was performed with a jelly-filled 
loose-tube cable [55]. The cable contains UC-
MCFs and RC-MCFs, and is available to the 
research community for SDM transmission trials. 
The XT of the UC-MCFs and MD of the RC-MCFs 
are well suppressed after deployment. Detailed 
characterization of the deployed MCFs and the 
transmission experiments over the deployed 
MCFs demonstrated that the transmission 
channels in the deployed MCFs are sufficiently 
stable and can transmit signals with negligible 
errors [56–58]. 

Recently, the first submarine cable prototype 
with MCFs was fabricated using the commercial 
submarine cable design (jelly-filled loose 
tube) [45]. Cabled UC-MCFs did not show any 
degradations in optical properties including XT 
compared to uncabled ones, and successful 
transmission experiment over the cabled UC-
MCFs was demonstrated with negligible Q factor 
changes due to cabling. 
Conclusions 
MCF technology has significantly advanced in the 
last decade or so, and practical MCFs have 
already been tested in deployed cables, which 
proves MCFs themselves are technically ready to 
be deployed. Though this paper focused on the 
fiber design, cables, and deployments of MCFs, 
the manufacturing and connection technologies 
for MCFs have also made a lot of progress 
toward practical realization and commercial 
deployments [59–63]. Such continuing R&D 
progress will make the MCF technology not only 
technically but economically viable solution to 
realize high-density/high-channel-count/high-
capacity optical communication systems. 
This research was supported in part by the National Institute of 
Information and Communications Technology (NICT), Japan. 

Tab. 2: Reported MCFs with 125-µm cladding. 
MCF Type UC-MCF RC-MCF 

 UC-1x4CF [26] UC-8CF [20] UC-2x2CF [26,43] UC-2x2CF [44,45] RC-4CF [46,47] RC-7CF [48] 

Cross 
section 

      
Core pitch Λ 25 µm ~30 µm 40 µm 45 µm 20 µm 23.5 µm 

Transmission λ O band O-C band C-L band 
Cable cutoff λ ≤1260 nm ≤1530 nm 

MFD, Aeff O)MFD 8.6 ± 0.4 µm C)Aeff ~80 µm2 C)Aeff ~110 µm2 (core mode) 
Attenuation O)≤0.40 dB/km C)≤0.18 dB/km C)≤0.16 dB/km 

a)XT, MD O)XT ≤ 10−4 km−1 O)XT ≤ 10−4 km−1 O)XT ≤ 10−5 km−1 C)XT ≤ 10−6 km−1 C)MD ≤ 10ps/√km C)MD ≤ 30ps/√km 
a: Co-propagating XT between nearest neighboring cores, O: λ = 1310 nm, C: λ = 1550 nm 
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