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Abstract
This paper proposes MAGC-RSA, a Multi-Agent Graph Convolutional Reinforcement Learning approach, to
solve the Routing and Spectrum Assignment (RSA) problem in a distributed manner. A blocking probability
reduction of 80% can be achieved compared to the Shortest Path First-Fit approach. ©2022 The Author(s)

Introduction
Bandwidth demands of end-to-end 5G network slices
and cloud services have significantly increased
over the years. Thus, optical transport networks
have evolved to better adapt to this requirement
with Elastic Optical Networks (EONs) technology
and Software-Defined Networking (SDN) paradigm.
EONs provide the flexibility to assign more fine-
grained spectral slot width with regards to the traf-
fic requests, hence, improve notably resource utiliza-
tion. In addition, SDN controller (SDNC) and open
standard interfaces (i.e. OpenConfig, Transport API,
etc.) enable the automation of network configuration,
control and monitoring. These are key enablers for
the implementation of Machine Learning (ML) and
Deep Reinforcement Learning (DRL) techniques in
optical networks.

ML techniques such as Neural Network, Tree-
based and K-means methods are applied to solve
both supervised and unsupervised learning tasks in
Quality of Transmission estimation, traffic prediction
and failure early detection[1]. On the other hand, the
Routing and Spectrum Assignment (RSA) is one of
the fundamental challenges which belongs to the set
of decision-making problems in EON. The RSA al-
gorithm computes a path between the source and
destination as well as a block of appropriate fre-
quency slots (FS) while ensure the spectrum conti-
nuity and contiguity constraints in a dynamic network
scenario. Thus, deep reinforcement learning is con-
sidered a good candidate to solve this problem either
in single or multi-agent (MADRL) approach such as
MaskRSA[2] or DeepRMSA[3], respectively. However,
the single-agent DRL approach may lead to a long
training period. Moreover, relational features, such
as non-fragmented spectrum block between links in
a path, need to be extracted by manually applying an
equivalent kernel.

In this paper, we propose the multi-agent graph
convolutional reinforcement learning approach called

MAGC-RSA to solve the Routing and Spectrum As-
signment problem in a distributed manner. Lever-
aging the similarity of network topology and graph
structure, GCN models each DRL agent as a network
node in the topology. Based on the global view pro-
vided by SDNC and the observation of its neighbors,
the DRL agent, which corresponds to the the source
node of the request, makes the decision to select the
optimal path and spectrum resources. Moreover, we
adopt the Attention mechanism[4] as the kernel in the
convolutional layer to extract latent features for faster
convergence even in a large observation space of
many nodes. Additionally, DRL agents are trained
with a fragmentation-aware reward function, which
leads to a better spectrum utilization. To the best
of our knowledge, this centralized training and dis-
tributed execution method is applied for the first time
to solve the RSA problem in EONs. Our approach
achieves a lower blocking probability as compared
to the heuristic K-Shortest Path First-Fit and another
MADRL solution.

MAGC-RSA: Multi-Agent Graph Convolutional
Reinforcement Learning for RSA problem
We model the MAGC-RSA algorithm as a graph G =

(N,E), where agents represent network nodes and
edges express the connection between them. For
every service request, the agent that corresponds to
the source node is in charge of finding the optimal
path and spectrum resources. Fig. 1 describes the
operation principle of our proposed solution.

MAGC-RSA architecture consists of three main
components: the Encoder, the Convolutional Layer
and the Q Network. They are illustrated in Fig. 2 and
described as follows:

1) Observation Encoder: The local observation of
agent ai at time step t is denoted as vector oi(t).
Each observation vector oi(t) contains the one-hot
encoding of the source and destination of the re-
quest, the number of requested frequency slots, the
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Fig. 1: Operation principle of MAGC-RSA

spectrum utilization of k candidate shortest paths be-
tween the source and destination, the spectrum uti-
lization of d links originating from K neighbors of ai.
The value of d, K may vary between environments.
In this paper, we choose d = 3, K = 4. Once con-
structed, each observation vector will be encoded by
the Multi Layer Perceptron (MLP) to create the fea-
ture vector fi of agent ai.

The feature vector fi is defined by multiplying two
matrices MAdj×F (t). MAdj is a N×N matrix, where
mi,j = 1 if agent ai has a connection towards aj ,
mi,j = 0 otherwise. F (t) is the feature matrix that
aggregates all feature vectors of all agents at time t.

2) Convolutional layers: These layers take as input
the feature vector fi, which is the output of MLP, and
an adjacency matrix MAdj of the agent. The convo-
lutional layer, namely the Kernel relation, is respon-
sible for generating the latent features. In this con-
text, the convolutional kernel uses multi-head dot-
product attention to compute interactions between
agents. Considering an agent ai and the set Ei of
its K neighbors, an input feature is expressed in a
query, key and value representation by each inde-
pendent attention head[4].

In order to model the relationship between each
agent and its neighboring agents (i.e., between i and
j ∈ Ei) for an attention head m, we use the following
formula:

αm
ij =

exp(δ . Wm
q fi . (W

m
k fj)

T )∑
e∈Ei

exp(δ . Wm
q fi . (Wm

k fe)T )
(1)

where: for each agent ai, there are a set of entities
Ei (K neighbors and the node ni itself) in the local
region, and δ is a scaling factor.

For each attention head, the value representations
of all the input features are weighted by the relation
and summed together. Subsequently, for agent i the
outputs of the M attention heads are concatenated
and fed into the σ-function (a MLP with ReLU non-
linearities) in order to produce the convolutional layer

Fig. 2: MAGC-RSA architecture.

output. Therefore, the latent feature vector li is for-
mulated as follows:

li = σ(concatenate[
∑
j∈Ei

αm
ijW

m
v fj ,∀m ∈ M ]) (2)

3) Q-Network: For each agent, the Q-network is ap-
plied on the concatenated features of the previous
layers, allowing to take into consideration the coop-
eration at different scopes. The Q-network aims here
to set the actions by calculating the Q-values. There-
fore, during the training phase, the tuple (O, A, O′,
R, MAdj) is stored into the buffer B at each time step
t; where: O= (o1, ... oN ) is the set of observations,
A= (a1, ... aN ) is the set of actions, O′= (o′1, ... o′N )
is the set of next observations, R= (r1, ... rN ) is the
set of rewards, and MAdj= (MAdj1 , ... MAdjN ) is the
set of adjacency matrix. Next, a random mini-batch
of size S is sampled from B and hence, we minimize
the following loss:

LossQ(θ) =
1

S

∑
S

1

N

N∑
i=1

((ri + γmaxa′Q(O′
i, a

′
i; θ

′))

−Q(Oi, ai; θ))
2

(3)

With: γ is the discount factor, and θ is the parame-
terization of the Q function.

It is worth noting that during the computation of Q-
loss in the learning phase, the underlying graph can
change over time, which prevents the convergence
of Q and leads to some learning instabilities. To deal
with the latter issue, MAdj is kept unchanged in two
successive time steps. Therefore, in order to update
the parameters of the latter scheme, the Q-loss gra-
dients of all agents are accumulated. Each agent
minimizes not only its own Q-loss but also the Q-
loss of the other agents it collaborates with. Each
agent communicates only with its K neighbors which
makes the scheme easily applicable to large-scale
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GC-MARL systems.
Deep-Q-learning (DQL) is implemented to train our

model where the future value estimation is used as
the target for the current estimation. We apply the
temporal relation regularization to keep the learning
attention weight distribution stable over time-steps.

Actions and Rewards
1) Actions: Given the observation vector and ad-
jacency matrix described in the previous section, a
MAGC-RSA agent takes an action based on the out-
put of the Q-Network. It selects the path and the first
index of the contiguous frequency slots block among
k× J actions in the discrete action space; where k is
the number of candidate shortest paths, and J is the
number of sufficient frequency slots blocks.

2) Rewards: The reward function considers not
only the resource allocation capability of the agent
for a given request, but also providing useful infor-
mation concerning the impact of this assignment with
regards to the effect of fragmentation. For that rea-
son, we introduce the Shannon entropy fragmenta-
tion metric Hfrag

[5] in the reward function as follows:

R =

{
1 + e−Hfrag successfully allocated

−1 otherwise
Since large values of Hfrag indicate higher levels

of fragmentation, we convert this metric using the
exponential function. The agent gets a positive re-
ward 1 plus an additional fragmentation-aware met-
ric if it can accommodate the request. Otherwise, it
receives a negative reward −1.

Experiment Setup
We conducted the experiments by extending the en-
vironment in[6]. In our implementation, all agents
cooperate and interact with one single environment.
Thus, after performing an action, all agents update
their observations and adjacency matrix, based on
the network information provided by SDNC. The sim-
ulation considers the dynamic scenario where re-
quests arrive following a Poisson process with ar-
rival rate of 10 and have the mean service dura-
tion of 25 units of time, which follows the exponential
distribution. Each request’s source-destination pair
is randomly selected and its bandwidth demand are
evenly distributed between [2-4] frequency slots. The
agents were trained in 1000 episodes. Each episode
consists of 10000 services. The hyperparameters
are specified in Table 1.

Performance Evaluation
The performance of MAGC-RSA is experimented on
the 14-node NSFNET topology for small-scale prob-
lems and the 28-node Pan-European topology for
larger-scale problems.[7]

Tab. 1: Hyperparameters

Parameters Values
Learning rate 10−4

Batch size 64
# neighbors 4

# attention head 4
# hidden layers 2

Hidden layers dimension 64
Discount factor γ 0.96

Training Episodes
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Fig. 3: Request blocking probability with NSFNET topology.

Training Episodes
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Fig. 4: Request blocking probability with Pan-European topology.

Fig. 3 and Fig. 4 depict the results in terms of re-
quest blocking probability. Our MAGC-RSA algorithm
outperforms DeepRMSA, SP-FF, and KSP-FF by ac-
cepting more requests in long-term. MAGC-RSA re-
duces the blocking probability by 16.62% as com-
pared to DeepRMSA.

Conclusions
This work shows that Multi-agent graph
convolutional-based reinforcement learning ap-
proach is capable of improving performance in
terms of blocking probability beyond traditional RSA
techniques and previous machine learning-based
methods. MAGC-RSA’s results also show that the
performance can be further improved via efficient
cooperation using multi-head attention, acting as
the convolutional kernel, to compute interactions
between agents.
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