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Abstract. We correlate accumulated dispersions measured in coherent receivers to autonomously 

identify fibre types in a network without traffic interruption. We propose two techniques to cope with 

ambiguities: one for ranking solutions by likeliness and one for accelerating their extraction by x100 

without enumerating all solutions. ©2022 The Author(s) 

Introduction 

To make sure that optical networks operate close 

to their maximum capabilities, operators need to 

decrease their “design margins” [1-2]. Various 

machine learning-based techniques [3-17] have 

been proposed to decrease design margins 

through reduction of uncertainty on networks’ 

physical parameters. In this paper, among all 

sources of uncertainties, we focus on inaccurate 

fiber type and chromatic dispersion, e.g., from 

poor inventory, or splicing mistakes. In [18-19], 

we proposed a technique to autodiscover the 

fiber type and estimate the chromatic dispersion 

parameters by correlating the accumulated 

dispersion (CD) of all established network 

lightpaths measured by coherent receivers. 

However, the technique sometimes finds that 

multiple fiber types could meet all the conditions, 

especially when network links (i.e., section 

between two neighbor nodes) are short and when 

CD measurement uncertainty is high. In this 

paper, we propose two major enhancements to 

help process the fiber ambiguities: (1) a method 

to rank solutions from most to least probable, so 

that the operators’ attention can be brought to 

likely anomalies in their fiber inventories, (2) a 

method to accelerate their extraction by x100 

without enumerating all solutions. 

Method with unknown uncertainty 

We propose the following mixed integer linear 

program (MILP) to predict characteristics (type, 

chromatic dispersion value and slope) of all links. 

We made two major improvements with respect 

to our previous MILP reported in [18-19]. 

The first one concerns the CD measurement 

uncertainty, expressed as Δ𝐷𝐿𝑃 in [18-19]. It was 

a fixed value for all the CD measurements, and it 

was also an input parameter of the MILP. To 

account for the fact that the CD measurement 

uncertainty is not always known, we transform it 

into a variable, and therefore make it an output of 

the MILP. More specifically, we define two 

variables for the CD measurement uncertainty: 

Δ𝐶𝐷𝑗
𝑀𝑖𝑛 and Δ𝐶𝐷𝑗

𝑀𝑎𝑥, representing  the lower and 

upper bounds of the CD measurement 

uncertainty. These two variables may vary from 

one generation of transceivers to the next, 

therefore we introduce as many variables Δ𝐶𝐷𝑗
𝑀𝑖𝑛 

and Δ𝐶𝐷𝑗
𝑀𝑎𝑥 as the number of lightpaths. 

The second improvement benefits to networks 

where the algorithm returns multiple solutions, 

i.e., when not all fiber types ambiguities are 

eliminated. It consists of  ranking the solutions by 

likelihood. To do so, we leverage the first 

improvement. By making the CD uncertainty an 

unknown variable, we also introduce the 

possibility to make the MILP minimize it. We can 

then sort the solutions by their objective functions 

in ascending order, the most likely appearing first 

in a multi-solution search.  

Acronyms 

CD: accumulated chromatic dispersion, LP: 

lightpath, L: link 

Input parameters 

• 𝑁𝐿𝑃 : number of lightpaths, 

• 𝑁 : number of network links, 

• 𝑁𝑓: Number of possible fiber types, 

• 𝜆0 : central wavelength (1550 nm), 

• 𝜆j: wavelength of lightpath j,  

• 𝛩𝑖, 𝑗 : (binary) = 1 if link 𝑖 is on lightpath 𝑗, 

• 𝐶𝐷𝑗,  𝑚𝑒𝑎𝑠
𝐿𝑃 (𝜆) : measured CD for lightpath j, 

• 𝐶𝐷𝑖
𝐿(𝜆0)𝑘, 𝑚𝑖𝑛/𝑚𝑎𝑥 : minimum or maximum 

CD for link 𝑖 assuming fiber type k.  

Output parameters 

• 𝐶𝐷𝑖
𝐿(𝜆0) : CD of the link i for 𝜆0,  

• 𝐶𝐷′
𝑖
𝐿(𝜆0) : CD slope of the link i for 𝜆0, 

• 𝐹𝑇𝑖, 𝑘 :  fiber type (= 1 if link 𝑖 is of type 𝑘), 

• (Δ𝐶𝐷𝑗
𝑀𝑖𝑛 ,  Δ𝐶𝐷𝑗

𝑀𝑎𝑥) > 0 : lower and upper 

bound of the CD measurement uncertainty. 

Constraints (see [19] for more details) 

CD for the lightpath j (∀𝑗 ∈ [1,  𝑁𝐿𝑃]): 

         ∑ [
𝐶𝐷𝑖

𝐿(𝜆0)

+(𝜆 − 𝜆0)𝐶𝐷′
𝑖
𝐿(𝜆0)

]

𝑁

𝑖=1

𝛩𝑖, 𝑗                   (1)

≤   𝐶𝐷𝑗,  𝑚𝑒𝑎𝑠
𝐿𝑃 (𝜆) + Δ𝐶𝐷𝑗

𝑀𝑎𝑥 

Mo4A.1 European Conference on Optical Communication (ECOC) 2022 © 
Optica Publishing Group 2022

Disclaimer: Preliminary paper, subject to publisher revision

mailto:emmanuel.seve@nokia-bell-labs.com


 

 

         ∑ [
𝐶𝐷𝑖

𝐿(𝜆0)

+(𝜆 − 𝜆0)𝐶𝐷′
𝑖
𝐿(𝜆0)

]

𝑁

𝑖=1

𝛩𝑖, 𝑗                           (2)

≥   𝐶𝐷𝑗,  𝑚𝑒𝑎𝑠
𝐿𝑃 (𝜆) − Δ𝐶𝐷𝑗

𝑀𝑖𝑛 

CD for the link 𝑖:    

             ∑ 𝐶𝐷𝑖
𝐿(𝜆0)𝑘, 𝑚𝑖𝑛

𝑁𝑓

𝑘=1
 𝐹𝑇𝑖, 𝑘 ≤ 𝐶𝐷𝑖

𝐿(𝜆0)         (3) 

          𝐶𝐷𝑖
𝐿(𝜆0) ≤    ∑ 𝐶𝐷𝑖

𝐿(𝜆0)𝑘, 𝑚𝑎𝑥
𝑁𝑓

𝑘=1  𝐹𝑇𝑖, 𝑘        (4) 

CD slope for the link 𝑖: 

           ∑ 𝐶𝐷′𝑖
𝐿(𝜆0)𝑘, 𝑚𝑖𝑛

𝑁𝑓

𝑘=1  𝐹𝑇𝑖, 𝑘 ≤ 𝐶𝐷′𝑖
𝐿(𝜆0)         (5) 

       𝐶𝐷′𝑖
𝐿(𝜆0) ≤    ∑ 𝐶𝐷′𝑖

𝐿(𝜆0)𝑘, 𝑚𝑎𝑥
𝑁𝑓

𝑘=1  𝐹𝑇𝑖, 𝑘         (6) 

Single fiber type per link: 

              ∑ 𝐹𝑇𝑖, 𝑘 = 1
𝑁𝑓

𝑘=1 , 𝐹𝑇𝑖, 𝑘 =  {0, 1}              (7) 

Objective function (OF) 

𝑚𝑖𝑛 (𝑂𝐹 =  ∑(Δ𝐶𝐷𝑗
𝑀𝑎𝑥 + Δ𝐶𝐷𝑗

𝑀𝑖𝑛)/𝑁𝐿𝑃

𝑁𝐿𝑃

𝑗=1

)     (8) 

Multi-solutions & ranking  

To obtain all fiber types compliant with Eqs 

(1)-(7), we apply the following procedure. For the 

first step, we search the first solution (“sol1”) 

while minimizing the objective function (8) which 

is the sum over all lightpaths of the CD 

uncertainties (Min and Max) normalized by the 

number of lightpaths (𝑁𝐿𝑃). We run again the 

MILP with an additional constraint to push the 

algorithm to find a new solution “𝑠𝑜𝑙 2” different 

from “𝑠𝑜𝑙 1”. This “eliminating” constraint is 

defined as: 

S = ∑ ∑ 𝐾𝑖, 𝑘 𝐹𝑇𝑖, 𝑘
𝑁𝑓

𝑘=1
𝑁
𝑖=1  < 𝑁              (9) 

Where 𝐾𝑖, 𝑘 is equal to 1 when the link 𝑖 of the 

solution “sol 1” is type 𝑘 and -1 otherwise. The 

constraint (9) is only satisfied by a solution 

differing from “𝑠𝑜𝑙 1” by at least one link. After 

each new solution “𝑠𝑜𝑙 x”, we add a xth constraint 

defined by the inequation (9) using the coefficient 
𝐹𝑇𝑖, 𝑘  of this xth solution until the moment where 

there are no solutions satisfying Eqs. (1)-(7) 

anymore. These solutions are naturally sorted by 

an ascending value of the objective function 

which reflects the amount of CD uncertainty 

according to eq. (8). We consider the European 

backbone network made of 28 nodes and 𝑁 = 41 

dispersion uncompensated links (Fig. 1(a)). The 

labels correspond to the length of the links (i.e., 

segment between two nodes) as a multiple of 

80 km, the amplifier span length. The network is 

based on five fiber types: LS, DSF, LEAF, TL and 

SSMF with dispersion and dispersion slope 

values shown in Table 1. We randomize the 

dispersion of every fiber link in the range shown 

in the table 1 as in [18-19] to create a realistic set 

of data. We scaled the network to illustrate the 

impact of the CD uncertainties for smaller 

networks. In Fig. 1(b), we plot the objective 

function as function of the solution rank when the 

fiber span length (also called network size) is 

reduced to 10 and 25 km. We process 300 

lightpaths (𝑁𝐿𝑃) where further random deviation 

is added to the monitored CD within ±50 ps/nm 

and ±100 ps/nm, to account for the measurement 

inaccuracy. The green square corresponds to the 

actual solution showing that it has the smallest 

objective function. As inaccuracy grows, our 

method shows expected limitations. We define 

the “CD tolerance” as the level of inaccuracy 

where the actual function does not come up as 

#1. Fig 1(c) represents this CD tolerance and is 

plotted as function of the number of lightpaths. 

The CD tolerance decreases when the number of 

lightpaths is smaller as fewer lightpaths share 

common links. The main impact comes from the 

network size: the CD tolerance decreases almost 

proportionally with the network size.   

Tab. 1: Fiber dispersion characteristics à 1550 nm from 

datasheets (D in ps/nm/km, D’ in ps/nm2/km) 

 LS DSF LEAF TL SSMF 

𝐷𝑚𝑖𝑛 -5 -0.7 -2.7 6.2 13.3 

𝐷𝑚𝑎𝑥 -2.4 1 4.8 9.2 18.6 

𝐷𝑚𝑖𝑛
′  0.06 0.06 0.074 0.042 0.05 

𝐷𝑚𝑎𝑥
′  0.08 0.08 0.093 0.062 0.067 

 

           
Fig. 1: (a) The European backbone network topology consisting of N = 28 nodes, 41 CD uncompensated links [20], (b) 

objective function vs solution index, (c) CD tolerance vs the number of lightpaths and the network size. 

(a) (b) (c) 
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Accelerated ambiguity search 

When CD uncertainty is approaching the CD 

tolerance, the number of solutions returned can 

be large. The “exhaustive search” method would 

consist in searching all solutions as presented in 

the previous paragraph. This method is very time 

consuming with a high CD uncertainty or small 

network. We propose a fast method to reach this 

goal without searching all solutions.  

In the exhaustive search, each new solution 

mainly differs from the previous one by only one 

link. To accelerate this ambiguity search, we 

propose to make several simultaneous changes 

to the previous algorithm. This method starts 

once the first solution “sol 1” is found and the 

objective function is then replaced by the sum S. 

The minimization of S leads to a new solution 

whose difference with the previous solution is 

maximized. We also change the way we are 
affecting the values of 𝐾𝑖, 𝑘, in the constraint (9). 

At each iteration of the accelerated method, the 
term 𝐾𝑖, 𝑘, is equal to 1 for all “k” fiber types found 

in all previous solutions. Fig. 2 illustrates how the 

list of fiber types is evolving after each iteration of 

the accelerate ambiguity search method. For that 

example, we consider the European network 

scaled to 10km network size with one fiber 

arrangement and one traffic matrix of 

300 lightpaths. The CD uncertainty is equal to 

80 ps/nm. For this case, the 13 ambiguous links 

are found 2 iterations after the first solution is 

founded. In Fig. 2(a), we represent by black 

squares the 10 and 13 ambiguous links found 

after the first and second iteration. Fig. 2(b)(c) 

show the list of fiber types for the 13 ambiguous 

links after the first and second iteration. Black 

squares correspond to the ambiguous fiber 

types. Links 5, 10 and 12 (grey squares) are not 

yet identified as ambiguous after the first 

iteration. The ambiguity is only revealed after the 

second (and last) iteration. White squares stand 

for fiber types which do not fulfil the conditions. 

This way of presenting ambiguous fiber types by 

black squares can also be viewed as a matrix 
representation of the terms 𝐾𝑖, 𝑘 in equation (9): 

+1 for the non-white squares and -1 otherwise. 

We compared the exhaustive and accelerated 

method with the same configuration as in Fig. 2 

and there is a perfect match between ambiguous 

links found by the two methods. In Fig. 3, we plot 

the computation time, the number of solutions 

and the ambiguous links as a function of the CD 

uncertainty. The number of solutions can reach 

695 (i.e., 13 ambiguous links) for a CD 

uncertainty of 80 ps/nm. To list all ambiguous 

links with their possible fiber types, the 

computation time increases with CD uncertainty 

(until x100) for the exhaustive method whereas it 

is almost independent for the accelerated 

method. This ratio between computation times 

can even be higher for larger CD uncertainties. 

The number of iterations being almost constant 

with the number of ambiguous links. 

Conclusions 

By monitoring and correlating the accumulated 

chromatic dispersion of all network lightpaths, we 

identify the fiber type of each link. When 

ambiguities remain, we developed two methods:  

one to rank all solutions by likeliness and one to 

accelerate the search by up x100 by identifying 

ambiguous links without enumerating all 

solutions. Each link of the network is either 

completely identified without any ambiguity or the 

list of possible fiber types is strongly reduced. 

 
Fig. 3: Computation time of the exhaustive (dashed 

line) and accelerated method (solid line) vs CD 

uncertainty. The second and third y-axis displays the 

number of solutions and ambiguous links, respectively. 

 
Fig. 2: (a) 13 identified ambiguous links (black squares) among the 82 links after the first (top) and second iteration 

(bottom). List of fiber types for each ambiguous link for the first (b) and second (c) iteration. 
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